Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung einer Lötverbindung zwischen zumindest einem Basisteil (2) und zumindest einem ersten Bauteil (3), umfassend die Schritte: Bereitstellen des Basisteils (2), teilweises Strahlen einer Oberfläche des Basisteils (2) mit einem SACO-Strahlmittel, dessen Strahlgut (50) eine Silikatbeschichtung (52) aufweist, derart, dass ein SACO-gestrahlter Bereich (20) und ein ungestrahlter Positionierungsbereich (40) vorhanden sind, und Anlöten des zumindest ersten Bauteils (3) auf dem ungestrahlten Positionierungsbereich (40), wobei der SACO-gestrahlte Bereich (20) als Lötstopp fungiert.
Abstract:
Procédé d'obtention d'une surface de collage pour collage direct Le procédé comprend -a) Fournir un substrat de base (1) fritté métallique présentant une surface de base (2)comportant une rugosité RMS inférieure 6 nanomètres et une rugosité PV inférieure à 100 nanomètres, -b) Bombarder d'espèces ioniques ladite surface de base (2), -c) Déposer une couche métallique (4) sur ladite surface de base (2), -d) Effectuer un polissage mécanique et/ou chimique d'une surface exposée de la couche métallique (4). L'invention concerne également une structure (800) comprenantun substrat de base (1) fritté métallique dont la surface de base (2) est formée au moins en partie d'un matériau métallique comprenant des espèces ioniques implantées par bombardementsur la surface de base (2), une couche métallique (4) de compostion chimique identique à celle du substrat de base (1) métalliqueet comportant une surface de collage (500) présentantune rugosité RMS inférieure0,6 nanomètreet une rugosité PV inférieure à 10 nanomètres.
Abstract:
A flip chip mounting method and a method for connecting substrates, which are applicable to next generation LSI flip chip mounting and have high productivity and reliability. A circuit board (21) having a plurality of connecting terminals (11) and a semiconductor chip (20) having a plurality of electrode terminals (12) are arranged to face each other, and a resin (13) containing conductive particles (12) and an air bubble generating agent is supplied to a space between the circuit board and the semiconductor chip. In such state, the resin (13) is heated, air bubbles (30) are generated from the air bubble generating agent contained in the resin (13), and the resin (13) is pushed to the outside of the air bubbles (30) by growth of the generated air bubbles (30). The pushed out resin (13) are self-collected between the circuit board (10) and the terminals of the semiconductor chip (20) in a column shape. In such state, by pressing the semiconductor chip (20) to the circuit board (10), the conductive particles (12) contained in the self-collected resin (13) between the facing terminals are brought into mutual contact, and the terminals are electrically connected.
Abstract:
A method for bonding a first semiconductor substrate to a second semiconductor substrate by direct bonding is described. The substrates are both provided on their contact surfaces with a dielectric layer, followed by a CMP step for reducing the roughness of the dielectric layer. Then a layer of SiCN is deposited onto the dielectric layer, followed by a CMP step which reduces the roughness of the SiCN layer to the order of 1 tenth of a nanometre. Then the substrates are subjected to a pre-bond annealing step and then bonded by direct bonding, possibly preceded by one or more pre- treatments of the contact surfaces, and followed by a post- bond annealing step, at a temperature of less than or equal to 250°C. It has been found that the bond strength is excellent, even at the above named annealing temperatures, which are lower than presently known in the art.
Abstract:
A method is provided for bonding a chip to a substrate, the method comprising the steps of providing a chip, providing a substrate, providing a recess in one of the chip and the substrate, arranging the chip and the substrate in contact with each other thereby forming a predetermined contact area and at least partly covering the recess by the other one of the chip and the substrate, and providing an amount of liquid adhesive in the recess for providing a bonding layer.
Abstract:
The method of the invention comprises placing the conducting powder mass (16) on a holder (14) and the member (12) on the mass (16) and applying a compression force of the member (12) against the mass (16) and the holder (14) before heating the mass (16). The intensity is increased from an initial value up to a predetermined agglomeration value of the conducting powder mass (16) lower than a plastic deformation threshold of the mass (16). The method then comprises maintaining the intensity at the first predetermined value for a predetermined agglomeration duration of the mass (16). Finally, the method comprises increasing the intensity from the first value to a second predetermined value lower than a critical damage threshold of the member (12) but higher than a minimum sintering threshold of the conducting powder mass (16) for a predetermined temperature, the second predetermined value being higher than the first predetermined value.
Abstract:
Dans ce procédé, on met en place la masse (16) sur le support (14) puis l'organe (12) sur la masse (16) et on applique une force de compression de l'organe (12) contre la masse (16) et le support (14), avant de chauffer la masse (16). On augmente l'intensité depuis une valeur initiale jusqu'à une première valeur prédéfinie d'agglomération de la masse (16), inférieure à un seuil de déformation plastique de la masse (16). Puis, on maintient l'intensité à la première valeur prédéfinie pendant une durée prédéterminée d'agglomération de la masse (16). Enfin, on augmente l'intensité de la première valeur jusqu'à une deuxième valeur prédéfinie inférieure à un seuil critique d'endommagement de l'organe (12) mais supérieure à un seuil minimal de frittage de la masse (16) pour une température prédéterminée, la deuxième valeur prédéfinie étant supérieure à la première valeur prédéfinie.
Abstract:
Provided are a high-performance and highly reliable semiconductor device wherein an electronic component is mounted on a substrate (for instance, by flip-chip mounting) by using an adhesive and generation of air bubbles are reduced in the adhesive, and a method for manufacturing such semiconductor device at a low cost with high efficiency. The method for manufacturing the semiconductor device includes at least a supplying step, a flow casting step, and a hardening step. In the supplying step, the adhesive (22) for bonding the electronic component on the substrate (10) is supplied at least on a part on the substrate (10) between the electronic component having bumps and the substrate (10) having bonding pads (12) corresponding to the bumps. In the flow casting step, the adhesive (22) is flow-cast by a flow-casting means (for instance, a jetting nozzle) (30) to satisfy an inequality of S 1 /S 0 >1, wherein, S 0 is a total contact area of the supplied adhesive (22) with the substrate (10), and S 1 is a total noncontact area of the adhesive (22) with the substrate (10) after flow-casting. In the hardening step, the adhesive (22) is hardened, while bringing the adhesive (22) into contact with the electronic component and the substrate (10), in a status where the bumps are permitted to abut to the bonding pads (12).
Abstract translation:提供了一种高性能且高可靠性的半导体器件,其中通过使用粘合剂将电子部件安装在基板上(例如通过倒装芯片安装),并且粘合剂中的气泡的产生减少,并且制造方法 这种半导体器件以低成本高效率。 半导体器件的制造方法至少包括供给步骤,流延步骤和硬化步骤。 在供给工序中,将电子部件接合在基板(10)上的粘合剂(22)至少在具有凸块的电子部件和具有接合焊盘的基板(10)之间的基板(10)的一部分上供给 12)。 在流动铸造步骤中,粘合剂(22)通过流铸装置(例如,喷射喷嘴)(30)流动铸塑以满足S< 1< 1< SUB< SUB > 0 SUB >> 1,其中,S O 0是所提供的粘合剂(22)与基底(10)的总接触面积,S 1是 在流延之后粘合剂(22)与基底(10)的总非接触区域。 在硬化步骤中,粘合剂(22)硬化,同时使粘合剂(22)与电子部件和基板(10)接触,在凸块被允许抵靠接合焊盘(12)的状态下, 。