Abstract:
Some embodiments include methods of forming interconnects through semiconductor substrates. An opening may be formed to extend partway through a semiconductor substrate, and part of an interconnect may be formed within the opening. Another opening may be formed to extend from a second side of the substrate to the first part of the interconnect, and another part of the interconnect may be formed within such opening. Some embodiments include semiconductor constructions having a first part of a through-substrate interconnect extending partially through a semiconductor substrate from a first side of the substrate; and having a second part of the through-substrate interconnect extending from a second side of the substrate and having multiple separate electrically conductive fingers that all extend to the first part of the interconnect.
Abstract:
Methods of bonding together semiconductor structures include annealing a first metal feature on a first semiconductor structure, bonding the first metal feature to a second metal feature of a second semiconductor structure to form a bonded metal structure that comprises the first metal feature and the second metal feature, and annealing the bonded metal structure. Annealing the first metal feature may comprise subjecting the first metal feature to a pre-bonding thermal budget, and annealing the bonded metal structure may comprise subjecting the bonded metal structure to a post-bonding thermal budget that is less than the pre-bonding thermal budget. Bonded semiconductor structures are fabricated using such methods.
Abstract:
Embodiments of the present invention provide for the dissipation of heat from semiconductor-on-insulator (SOI) structures. In one embodiment, a method for fabricating an integrated circuit is disclosed. In a first step, active circuitry is formed in an active layer of a SOI wafer. In a second step, substrate material is removed from a substrate layer disposed on a back side of the SOI wafer. In a third step, insulator material is removed from the back side of the SOI wafer to form an excavated insulator region. In a fourth step, a thermal dissipation layer is deposited on said excavated insulator region. The thermal dissipation layer is thermally conductive and electrically insulating.
Abstract:
Process for producing a structure by direct adhesive bonding of two elements comprising the production of the elements to be assembled and the assembly of said elements, in which the production of the elements to be assembled comprises the steps: - deposition on a substrate of a TiN layer by physical vapour deposition, - deposition of a copper layer on the TiN layer, and in which the assembly of said elements comprises the steps: - polishing the surfaces of the copper layers intended to come into contact so that they have a roughness of less than 1 nm RMS and hydrophilic properties, - bringing said surfaces into contact, - storing said structure at atmospheric pressure and at ambient temperature.
Abstract:
Procédé de réalisation d'au moins un détecteur infrarouge photosensible par assemblage d'un premier composant (100, 230) électronique comportant une pluralité de photodiodes (110) sensibles au rayonnement infrarouge et d'un deuxième composant (400) électronique comprenant au moins un circuit électronique de lecture de la pluralité de photodiodes, le procédé étant caractérisé en ce qu'il comprend : l'obtention sur chacun des premier (100, 230) et deuxième (400) composants d'une face de liaison (192, 492) formée au moins partiellement par une couche (210, 405) à base d'oxyde de silicium (Si02); une étape de collage du premier composant (100, 230) et du deuxième composant (400) par leurs faces de liaison (192, 492), réalisant ainsi le collage direct des deux composants (100, 230, 400). Ce procédé permet de simplifier l'hybridation de composants hétérogènes pour réaliser un détecteur infrarouge. L'invention porte également sur un détecteur infrarouge et sur un ensemble pour la réalisation d'un tel détecteur.
Abstract:
Some embodiments include a planarization method. A liner is formed across a semiconductor substrate and along posts that extending upwardly from the substrate. Organic fill material is formed over the liner and between the posts. A planarized surface is formed which extends across the posts and across one or both of the liner and the fill material. Some embodiments include a semiconductor construction containing a semiconductor die. Electrically conductive posts extend through the die. The posts have upper surfaces above a backside surface of the die, and have sidewall surfaces extending between the backside surface and the upper surfaces. A liner is across the backside surface of the die and along the sidewall surfaces of the posts. Electrically conductive caps are over the upper surfaces of the posts, and have rims along the liner adjacent the sidewall surfaces of the posts.
Abstract:
A method for bonding a first semiconductor substrate to a second semiconductor substrate by direct bonding is described. The substrates are both provided on their contact surfaces with a dielectric layer, followed by a CMP step for reducing the roughness of the dielectric layer. Then a layer of SiCN is deposited onto the dielectric layer, followed by a CMP step which reduces the roughness of the SiCN layer to the order of 1 tenth of a nanometre. Then the substrates are subjected to a pre-bond annealing step and then bonded by direct bonding, possibly preceded by one or more pre- treatments of the contact surfaces, and followed by a post- bond annealing step, at a temperature of less than or equal to 250°C. It has been found that the bond strength is excellent, even at the above named annealing temperatures, which are lower than presently known in the art.
Abstract:
Some embodiments include methods of forming interconnects through semiconductor substrates. An opening may be formed to extend partway through a semiconductor substrate, and part of an interconnect may be formed within the opening. Another opening may be formed to extend from a second side of the substrate to the first part of the interconnect, and another part of the interconnect may be formed within such opening. Some embodiments include semiconductor constructions having a first part of a through-substrate interconnect extending partially through a semiconductor substrate from a first side of the substrate; and having a second part of the through-substrate interconnect extending from a second side of the substrate and having multiple separate electrically conductive fingers that all extend to the first part of the interconnect.
Abstract:
Methods of bonding together semiconductor structures include annealing metal of a feature on a semiconductor structure prior to directly bonding the feature to a metal feature of another semiconductor structure to form a bonded metal structure, and annealing the bonded metal structure after the bonding process. The thermal budget of the first annealing process may be at least as high as a thermal budget of a later annealing process. Additional methods involve forming a void in a metal feature, and annealing the metal feature to expand the metal of the feature into the void. Bonded semiconductor structures and intermediate structures are formed using such methods.