Abstract:
The invention relates to a method of fabricating an interconnection element, comprising fabricating an interconnection component (730), including a connection region; fabricating a cantilever beam structure (720) on a sacrificial substrate; mounting the cantilever beam structure (720) to the connection region of the interconnection component (736); and releasing the mounted cantilever beam structure from the sacrificial substrate by removing at least a portion of the sacrificial substrate, whereby a cantilever beam arrangement (720, 730) is formed.
Abstract:
Products and assemblies are provided for socketably receiving elongate interconnection elements (516), such as spring contact elements, extending from electronic components (518), such as semiconductor devices. Socket substrates (504) are provided with capture pads (506) for receiving ends of elongate interconnection elements (516) extending from electronic components (518). Various capture pad configurations are disclosed. A securing device such as a housing (520) positions the electronic component securely to the socket substrate (504). Connections to external devices are provided via conductive traces (510) adjacent the surface of the socket substrate. The socket substrate (504) may be supported by a support substrate (502). In a particularly preferred embodiment the capture pads are formed directly on a primary substrate such as a printed circuit board.
Abstract:
A microelectronic spring contact element comprising: an electrically conductive resilient beam (900) comprising a contact end portion (904) protruding from the beam in a first direction and a base end portion (902) protruding from the beam in a second direction; an insulating layer (920) enveloping at least a portion of the beam (900); and a conductive layer (922) enveloping at least a portion of the insulating layer (920), the conductive layer electrically connected to a predetermined voltage level, wherein the predetermined voltage level controls an impedance of the microelectronic spring contact element.
Abstract:
A method of making a temporary connection between a first electronic component and a second electronic component, and subsequently making a permanent connection between the first electronic component and a third electronic component, comprising permanently mounting a plurality of resilient contact structures to a surface of the first electronic component; urging the first electronic component against the second electronic component to effect a temporary connection between the first electronic component and the second electronic component; removing the second electronic component; and mounting the first electronic component to the third electronic component.
Abstract:
A probe card (321) is provided for contacting an electronic component with raised contact elements. In particular, the present invention is useful for contacting a semiconductor wafer (310) with resilient contact elements (301), such as springs. A probe card (321) is designed to have terminals to mate with the contact elements on the wafer (310). In a preferred embodiment, the terminals are posts. In a preferred embodiment the terminals include a contact material suitable for repeated contacts. In one particularly preferred embodiment, a space transformer (324) is prepared with contact posts on one side and terminals on the opposing side. An interposer (325) with spring contacts (333, 334) connects a contact (335) on the opposing side of the space transformer (324) to a corresponding terminal (332) on a probe card (321), which terminal (332) is in turn connected to a terminal (331) which is connectable to a test device such as a conventional tester.