摘要:
The present invention relates to a method of forming a joint (25) bonding together two solid objects (20, 22) and a joint (25) made by the method, where the joint (25) is formed by a layer (24) of a binary system of components A and B which upon heat treatment forms a porous, coherent and continuous single-phased solid-solution of the components A and B extending across a bonding layer of the joint (25) and a second phase of the components A and B dispersed in the porous, coherent and continuous single-phased solid-solution structure. Components A and B may be fully miscible in the solid state. Alternatively, the binary system of components A and B may be a partly miscible eutectic system. The first and second solid objects (20, 22) may be any physical objects which are to be bonded together, i.e. materials such as e.g. Si, SiC, GaAs, GaN, SOI, Alumina, AIN, Si3N4, glass, Kovar, Cu, Al, etc. and/or components such as e.g. MEMS, transistors, substrates, resistances, condensers, ICs, diodes, etc. The present invention has the advantages of enabling forming the bond (25) at a relatively low process temperature which may be less than the intended operation temperature of the bond (25) and also of partly remelting the bonding layer (25) if the operation temperature becomes higher than the solidus temperature. The partly remelting of the bond layer (25) according to the invention is believed to provide an advantage of releasing thermal stresses in the bond (25), possible recovery of zones with significant defect concentrations at grain boundaries, and probably also reducing the occurrence of a detrimental Kirkendall voiding effect between the bonded components (20, 22). Thus the joints (25) according to the present invention are believed to be more resilient when exposed to thermal loads such as cycling and high temperature operation, especially when the thermal cycling involves temperatures above the solidus temperature. Another benefit of the joint (25) according to the invention is that it avoids fragile intermetallic compounds.
摘要:
The invention relates to an apparatus for especially thermally joining micro-electromechanical parts (2, 3) in a process chamber (8), comprising a bottom support plate (11) for holding at least one first (2) of the parts (2, 3) to be joined, and a pressing device (15) for applying pressure to at least one second (3) of the parts (2, 3) to be joined in relation to the at least one first part (2). The pressing device (15) is equipped with an expandable membrane (19) provided for entering in contact with the at least one second part (3). Fluid pressure, in particular gas pressure, can be applied to said membrane (19) on the side thereof facing away from the parts (2, 3) to be joined.
摘要:
A sintering film comprising one or more metals, one or more metal alloys, or blends of one or more metals and one or more metal alloys, is prepared optionally using a solid or semi-solid organic binder. The organic binder can have fluxing functionality; the organic binder can be one that will partially or completely decompose upon sintering of the metal or metal alloy in the composition. In one embodiment, the sintering film is provided on an end use substrate, such as a silicon die or wafer, or a metal circuit board or foil, or the sintering film is provided on a carrier, such as a metal mesh. Preparation is accomplished by dispersing the metal or metal alloy in a suitable solvent, with or without a binder, and exposing the composition to high temperature to evaporate off the solvent and partially sinter the metal or metal alloy.
摘要:
A precipitation-hardened partial transient liquid phase bond and method of making same is provided. The bond is created at a bonding temperature and then, based on the phase diagrams corresponding to the materials in the interlayer between the bonded materials, the bond is held at a lower heat-treatment temperature to achieve a precipitation-hardened structure.
摘要:
A method for bonding an LED wafer, a method for manufacturing an LED chip, and a bonding structure are provided. The method for bonding an LED wafer includes the following steps. A first metal film is formed on an LED wafer. A second metal film is formed on a substrate. A bonding material layer whose melting point is lower than or equal to about 110°C is formed on the surface of the first metal film. The LED wafer is placed on the substrate. The bonding material layer is heated at a pre-solid reaction temperature for a pre-solid time to perform a pre-solid reaction. The bonding material layer is heated at a diffusion reaction temperature for a diffusing time to perform a diffusion reaction, wherein the melting points of the first and the second inter-metallic layers after diffusion reaction are higher than about 110°C.
摘要:
A submount (40) comprises a submount substrate (32), a substrate protective layer (35) formed on the submount substrate (32), an electrode layer (33) formed on the substrate protective layer (35), and a solder layer (34) formed on the electrode layer (33). The carbon concentration in at least one of the region adjacent to an interface formed between said submount substrate (32) and said substrate protective layer (35), the region adjacent to an interface formed between said substrate protective layer (35) and said electrode layer (33) and the region adjacent to an interface formed between said electrode layer (33) and said solder layer (34) is not more than 1 x 10 20 atoms / cm 3 .
摘要:
A device for soldering contacts on semiconductor chips. A chip is held on a chip mount by a chuck and is heated from a side facing away from the wafer by means of a radiation source, so that a solder applied to a side facing the wafer is melted. A flushing device, having a plate with a window, a gas channel, and a gas outlet opening for a forming gas, is arranged at the window, is fitted parallel to the wafer. The chip is moved vertically in relation to the wafer, pressed onto the wafer through the window, and soldered on by means of isothermal solidification.