摘要:
There is provided an operation device that can be stably operated without taking up a lot of space when tilted by a user during the operation. The operation device includes: a support part (12) formed to be pressable against a supporting object in a state in which the user is holding the operation device; a pressing detection part (13) for detecting a state in which the support part (12) is pressed against the supporting object; and a tilt detection part for detecting a tilt of the operation device. The user changes the tilt of the operation device in a state in which the support part (12) is pressed against the supporting object to thereby implement the operation with respect to a connection apparatus.
摘要:
Provided are a method of manufacturing a gallium nitride-based compound semiconductor light-emitting device with a low driving voltage (VI) and high light outcoupling efficiency, a gallium nitride-based compound semiconductor light-emitting device, and a lamp. In the method of manufacturing the gallium nitride-based compound semiconductor light-emitting device, a transparent conductive oxide film (15) including a dopant is laminated on a p-type semiconductor layer (14) of a gallium nitride-based compound semiconductor device (1). The transparent conductive oxide film 15 is subjected to a laser annealing process using a laser after the lamination of the transparent conductive oxide film (15).
摘要:
Provide is a portable image display device which allows a user to perform many different operation inputs with ease. The portable image display device includes: a display screen having a substantially rectangular shape; and a plurality of touch sensors provided along at least two sides defining a circumference of the display screen, for each detecting a position touched by a finger of a user. The portable image display device changes an image displayed on the display screen in accordance with a combination of the positions of a plurality of the fingers which are respectively detected by the plurality of touch sensors.
摘要:
A GaN-based semiconductor light-emitting device 1 includes a stacked body 10A having the component layers 12 that include an n-type semiconductor layer, a light-emitting layer and a p-type semiconductor layer each formed of a GaN-based semiconductor, sequentially stacked and provided as an uppermost layer with a first bonding layer 14 made of metal and a second bonding layer 33 formed on an electroconductive substrate 31, adapted to have bonded to the first bonding layer 14 the surface thereof lying opposite the side on which the electroconductive substrate 31 is formed, made of a metal of the same crystal structure as the first bonding layer 14, and allowed to exhibit an identical crystal orientation in the perpendicular direction of the bonding surface and the in-plane direction of the bonding surface.
摘要:
The titanium materials of the present invention have an oxide film on the surface and an interference color of the oxide film. In forming a transparent coating layer on the surface of the titanium materials, provisions are made so that the oxide film has an thickness of 150 nm to 600 nm, or the interference color due to the anodic oxide film is developed by the actions of both wavelengths strengthened and weakened by interference and the color phases of the color developed by the wavelength strengthened by interference and that of complementary colors of the color developed by the wavelength weakened by interference are as close to each as not more than 90 degrees apart on the color wheel, or the L* value on the L*a*b* calorimetric system is not less than 33. The laminated glasses of the present invention having excellent ornamentality comprise at least said titanium sheet interposed between multiple sheet glasses layered together by means of adhesive layers.
摘要翻译:本发明的钛材料的表面具有氧化膜和氧化膜的干涉色。 在钛材料的表面上形成透明涂层时,要规定氧化膜的厚度为150nm〜600nm,或由于阳极氧化膜的干涉色由两波长的作用而发展 被干扰强化和削弱,由被干扰强化的波长所产生的颜色的颜色相和由被干涉减弱的波长产生的颜色的互补色的颜色相位在色轮上分别接近不超过90度 ,或L * a * b *量热系统的L *值不小于33.本发明具有优异装饰性的夹层玻璃至少包括介于通过粘合剂层层叠在一起的多片玻璃之间的钛片 。
摘要:
The present invention provides a nitride semiconductor light emitting device, which comprises positive and negative electrodes with high adhesion, can output high power, and does not generate heat; specifically, the present invention provides a nitride semiconductor light emitting device comprising at least an ohmic contact layer, a p-type nitride semiconductor layer, a nitride semiconductor light emitting layer, and an n-type nitride semiconductor layer, which are laminated on a plate layer, wherein a plate adhesion layer is formed between the ohmic contact layer and the plate layer, and the plate adhesion layer is made of an alloy comprising 50% by mass or greater of a same component as a main component of an alloy contained in the plate layer.
摘要:
The present invention provides a gallium nitride compound semiconductor light-emitting device that prevents an increase in the specific resistance of a p-type semiconductor layer due to hydrogen annealing and reduces the specific resistance of a translucent conductive oxide film to lower a driving voltage Vf, a method of manufacturing the same, and a lamp including the same. The method of manufacturing the gallium nitride compound semiconductor light-emitting device includes: forming a positive electrode 15 composed of a translucent conductive oxide film on a p-type GaN layer 14 of a gallium nitride compound semiconductor device; and a hydrogen annealing process of annealing the positive electrode 15 in a gas atmosphere including hydrogen (H2).
摘要:
The present invention provides a light-emitting device comprising an n-type semiconductor layer, a light-emitting layer, a p-type semiconductor layer and a titanium oxide-based conductive film layer laminated in this order, wherein the titanium oxide-based conductive film layer comprises a first layer as a light extraction layer and a second layer as a current diffusion layer, the second layer being arranged on the p-type semiconductor layer side of the first layer, a method of manufacturing a light-emitting device, and a lamp.
摘要:
There is provided a semiconductor light-emitting device having excellent light extraction efficiency and low wavelength unevenness, a manufacturing method thereof, and a lamp. A semiconductor light-emitting device includes an n-type semiconductor layer 12, a light-emitting layer 13, a p-type semiconductor layer 14, and a titanium oxide-based conductive film layer 15 laminated in this order, wherein a random concavo-convex surface 15 is formed on at least a part of the surface of the titanium oxide-based conductive film layer.
摘要:
A magnetic recording medium includes an orientation adjusting layer, a nonmagnetic under layer, a nonmagnetic intermediate layer, a magnetic layer and a protective layer sequentially stacked on a nonmagnetic substrate provided on a first surface thereof with a texture streak and used for a magnetic disc. The nonmagnetic under layer contains at least a layer formed of a Cr—Mn-based alloy and possesses magnetic anisotropy having an axis of easy magnetization in a circumferential direction thereof. A magnetic recording and reproducing device includes the magnetic recording medium and a magnetic head for enabling information to be recorded in and reproduced from the magnetic recording medium.