Abstract:
A memory device including a metallic layer shielding electromagnetic radiation and/or dissipating heat, and a method of making the memory device, are disclosed. The metallic layer is formed on a metallic layer transfer assembly. The metallic layer transfer assembly and the unencapsulated memory device are placed in a mold and encapsulated. During the encapsulation and curing of the molding compound, the metallic layer is transferred from the shield to the encapsulated memory device.
Abstract:
The present disclosure provides a method of fabricating a semiconductor device. The method includes providing a semiconductor substrate having a first active region and a second active region, providing a semiconductor substrate having a first region and a second region, forming a high-k dielectric layer over the semiconductor substrate, forming a first capping layer and a second capping layer over the high-k dielectric layer, the first capping layer overlying the first region and the second capping layer overlying the second region, forming a layer containing silicon (Si) over the first and second capping layers, forming a metal layer over the layer containing Si, and forming a first gate stack over the first region and a second gate stack over the second active region. The first gate stack includes the high-k dielectric layer, the first capping layer, the layer containing Si, and the metal layer and the second gate stack includes the high-k dielectric layer, the second capping layer, the layer containing Si, and the metal layer.
Abstract:
A semiconductor package is disclosed including a substrate, a solder mask layer, one or more semiconductor die mounted to the solder mask layer and electrically coupled to the substrate, and a glob top cover over the semiconductor die. The solder mask further includes a dam protruding above surrounding areas of the solder mask layer and a cavity recessed into the solder mask layer for limiting flow of the glob top cover when the glob top material is applied.
Abstract:
Methods and structures for forming a contact hole structure are disclosed. These methods first form a substantially silicon-free material layer over a substrate. A material layer is formed over the substantially silicon-free material layer. A contact hole is formed within the substantially silicon-free material layer and the material layer without substantially damaging the substrate. In addition, a conductive layer is formed in the contact hole so as to form a contact structure.
Abstract:
A semiconductor device is disclosed that includes: a substrate; a first high-k dielectric layer; a second high-k dielectric layer formed of a different high-k material; and a metal gate. In another form, a method of forming a semiconductor device is disclosed that includes: providing a substrate; forming a first high-k dielectric layer above the substrate; forming a second dielectric layer of a different high-k material above the first dielectric layer; and forming a gate structure above the second dielectric layer. In yet another form, a method of forming a semiconductor device is disclosed that includes: providing a substrate; forming an interfacial layer above the substrate; forming a first high-k dielectric layer above the interfacial layer; performing a nitridation technique; performing an anneal; forming a second high-k dielectric layer of a different high-k material above the first dielectric layer; and forming a metal gate structure above the second dielectric layer.
Abstract:
A semiconductor structure and methods for forming the same are provided. The semiconductor structure includes a first MOS device of a first conductivity type and a second MOS device of a second conductivity type opposite the first conductivity type. The first MOS device includes a first gate dielectric on a semiconductor substrate; a first metal-containing gate electrode layer over the first gate dielectric; and a silicide layer over the first metal-containing gate electrode layer. The second MOS device includes a second gate dielectric on the semiconductor substrate; a second metal-containing gate electrode layer over the second gate dielectric; and a contact etch stop layer having a portion over the second metal-containing gate electrode layer, wherein a region between the portion of the contact etch stop layer and the second metal-containing gate electrode layer is substantially free from silicon.
Abstract:
Semiconductor devices with dual-metal gate structures and fabrication methods thereof. A semiconductor substrate with a first doped region and a second doped region separated by an insulation layer is provided. A first metal gate stack is formed on the first doped region, and a second metal gate stack is formed on the second doped region. A sealing layer is disposed on sidewalls of the first gate stack and the second gate stack. The first metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a first metal layer on the high-k dielectric layer, a metal insertion layer on the first metal layer, a second metal layer on the metal insertion layer, and a polysilicon layer on the second metal layer. The second metal gate stack comprises an interfacial layer, a high-k dielectric layer on the interfacial layer, a second metal layer on the high-k dielectric layer, and a polysilicon layer on the second metal layer.
Abstract:
A semiconductor structure includes a substrate, a gate stack on the substrate, a source/drain region adjacent the gate stack, a source/drain silicide region on the source/drain region, a protection layer on the source/drain silicide region, wherein a region over the gate stack is substantially free from the protection layer, and a contact etch stop layer (CESL) having a stress over the protection layer and extending over the gate stack.
Abstract:
A plasma processing operation uses a gas mixture of N2 and H2 to both remove a photoresist film and treat a low-k dielectric material. The plasma processing operation prevents degradation of the low-k material by forming a protective layer on the low-k dielectric material. Carbon from the photoresist layer is activated and caused to complex with the low-k dielectric, maintaining a suitably high carbon content and a suitably low dielectric constant. The plasma processing operation uses a gas mixture with H2 constituting at least 10%, by volume, of the gas mixture.
Abstract translation:等离子体处理操作使用N 2和H 2的气体混合物去除光致抗蚀剂膜并处理低k电介质材料。 等离子体处理操作通过在低k电介质材料上形成保护层来防止低k材料的劣化。 来自光致抗蚀剂层的碳被激活并与低k电介质复合,保持适当高的碳含量和合适的低介电常数。 等离子体处理操作使用构成气体混合物的至少10体积%的H 2 N 2气体混合物。
Abstract:
A method is described for selectively etching a high k dielectric layer that is preferably a hafnium or zirconium oxide, silicate, nitride, or oxynitride with a selectivity of greater than 2:1 relative to silicon oxide, polysilicon, or silicon. The plasma etch chemistry is comprised of one or more halogen containing gases such as CF4, CHF3, CH2F2, CH3F, C4F8, C4F6, C5F6, BCl3, Br2, HF, HCl, HBr, HI, and NF3 and leaves no etch residues. An inert gas or an inert gas and oxidant gas may be added to the halogen containing gas. In one embodiment, a high k gate dielectric layer is removed on portions of an active area in a MOS transistor. Alternatively, the high k dielectric layer is used in a capacitor between two conducting layers and is selectively removed from portions of an ILD layer.