摘要:
In a power output apparatus of the present invention, a control unit sets a WOT (wide open throttle) line L2, where the maximum torque of an engine attains, as a boundary between an over drive area and an under drive area in the case where a rotor shaft of an assist motor is set in a state of over drive linkage. The control unit determines a target working point of an outer rotor shaft of a clutch motor, which functions as a drive shaft, based on an externally required output, and selects the WOT line L2 as a performance line of the engine in the case where the target working point of the outer rotor shaft is present in the under drive area. The control unit then sets a switching instruction flag, in order to change the state of linkage of the rotor shaft of the assist motor from the state of over drive linkage to a state of under drive linkage. This arrangement of the invention reduces the maximum load capacity of the assist motor and decreases the maximum electric current of an inverter circuit for driving the assist motor.
摘要:
The object of the present invention is to provide a technique that detects an electrical angle of a synchronous motor with a high accuracy and adequately controls the synchronous motor even when the synchronous motor is driven under a non-loading condition. The direction that passes through a rotating shaft of the motor and causes a magnetic flux to pass through permanent magnets is defined as a d-axis. Even when the motor is driven under the non-loading condition and no flow of electric currents through windings is required in response to a torque requirement, the method of the present invention applies a voltage to the d-axis, based on an estimated electrical angle. Application of the voltage is realized by switching on and off a transistor inverter with a delay of a dead time. The method solves voltage equations with the applied voltages and the electric currents corresponding to the voltages, and controls the motor while correcting the electrical angle with errors of the arithmetic operations. A dead-time correction is carried out prior to the solution of the voltage equations, based on the direction of the flow of the electric current through the d-axis. This eliminates the effects of the dead time on the switching operations.
摘要:
A power output apparatus (20) of the present invention includes a clutch motor (30), an assist motor (40), and a controller (80) for controlling the clutch motor (30) and the assist motor (40). The clutch motor (30) includes an outer rotor (32) linked with a crankshaft (56) of a gasoline engine (50) and an inner rotor (34) connecting with a drive shaft (22). The assist motor (40) includes a rotor (42) connecting with the drive shaft (22). When the residual capacity of a battery (94) is less than an allowable minimum value, a control CPU (90) of the controller (80) controls a first driving circuit (91) to enable the clutch motor (30) to carry out the power operation and apply a first torque to the drive shaft (22) in the direction of rotation of the drive shaft (22). The control CPU (90) concurrently controls a second driving circuit (92) to enable the assist motor (40) to carry out the regenerative operation and apply a second torque to the drive shaft (22) in the reverse of the rotation of the drive shaft (22). The second torque is substantially equal in magnitude but opposite in direction to the first torque. The electric power regenerated by the assist motor (40) is supplied to the battery (94) to supplement the electric power of the battery (94). The power output apparatus (20) of the invention can thus make the torque output to the drive shaft (22) approximately equal to zero.
摘要:
A power output apparatus (20) includes an engine (50), a clutch motor (30) connecting with a crankshaft (56), an assist motor (40) connecting with a drive shaft (22), and a controller (80) for controlling the clutch motor (30) and the assist motor (40). When an electrical angle of the rotors in the clutch motor (30) is equal to .pi./2, a constant current is made to flow through three-phase coils (36) of the clutch motor (30) in order to enable a torque equal to or greater than a maximum torque ripple of the engine (50) to be applied from the clutch motor (30) to a drive shaft (22) and the crankshaft (56). This locks up an outer rotor (32) and an inner rotor (34) of the clutch motor (30). This structure enables the torque and rotation of the engine (50) to be directly transmitted to the drive shaft (22) at a high efficiency.
摘要:
A power output apparatus 20 includes an engine 50, a clutch motor 30 having rotors 31 and 33 respectively linked with a crankshaft 56 and a drive shaft 22, an assist motor 40 attached to a rotor-rotating shaft 38, a first clutch 45 for connecting and disconnecting the rotor-rotating shaft 38 to and from the crankshaft 56, a second clutch 46 for connecting and disconnecting the rotor-rotating shaft 38 to and from the drive shaft 22, and a controller 80 for controlling the motors 30 and 40. The controller 80 operates the clutches 45 and 46 according to the states of the engine 50 and the drive shaft 22 and changes the connection of the rotor-rotating shaft 38, so as to enable power output from the engine 50 to be efficiently converted by the motors 30 and 40 and output to the drive shaft 22.
摘要:
A power output apparatus (20) of the present invention includes a clutch motor (30), an assist motor (40), and a controller (80) for controlling the clutch motor (30) and the assist motor (40). The clutch motor (30) includes an outer rotor (32) linked with a crankshaft (56) of a gasoline engine (50) and an inner rotor (34) connecting with a drive shaft (22). The assist motor (40) includes a rotor (42) connecting with the drive shaft (22). An electric current flowing through three-phase coils (36) in the clutch motor (30) enables the outer rotor (32) to be coupled with the inner rotor (34) with a certain slip. Electrical energy corresponding to the certain slip is recovered as an electric power via a first driving circuit (91). The assist motor (40) is controlled with the electric power via a second driving circuit (92) so as to apply a torque to the drive shaft (22). The power output apparatus (20) of the invention can transmit the power generated by the gasoline engine (50) to the drive shaft (22) at a high efficiency and produce a torque in the direction of rotation of the crankshaft (56).
摘要:
The present invention provides a system for detecting a rotational orientation or electrical angle of a rotor without any specific sensor so as to efficiently control a synchronous motor even while the rotor is at a stop or rotates at a relatively low speed. An electrical angle of a rotor (50) is determined according to a previously stored relationship between inductances of different interphases and electrical angles. At a first step, an electrical angle .phi. is calculated either in a range of 0 through .pi. or in a range of .pi. through 2.pi. by approximation. At a second step, a range where the electrical angle .phi. belongs to is specified by taking advantage of asymmetrical property of a maximum current in response to a voltage applied to each interphase. An equivocal electrical angle .theta. is then determined in a range of 0 through 2.pi.. In order to control the driving current of a three-phase synchronous motor (40) at better efficiency, a preferable system of the invention determines the electrical angle according to the above method while the rotor (50) is under inactivating condition or rotates at a speed of less than a predetermined rotating speed, and detects the electrical angle with a reverse electromotive voltage while the rotor (50) rotates at a speed of not less than the predetermined rotating speed.
摘要:
A brushless motor energized by an M-phase alternating current having a stator with M.multidot.m (m is an even number) teeth, a coil wound around each of the teeth, and a rotor with (M+1).multidot.m permanent magnets. Since the coil is wound around each tooth, cancellation of magnetic fluxes produced by adjacent coils is minimized, which results in a greater efficiency of the motor. Since one coil corresponds to less than one magnet, irregularity on the induced voltage of the coils barely occurs, which results in a smoother output torque of the motor.
摘要:
A power output apparatus 20 includes a clutch motor, an assist motor, and a controller. The clutch motor and the assist motor are controlled by the controller to enable the power output from an engine to a crankshaft 56, and expressed as the product of its revolving speed and torque, to be converted to the power expressed as the product of a revolving speed and a torque of a drive shaft and to be output to the drive shaft. The engine can be driven at an arbitrary driving point defined by a revolving speed and a torque, as long as the energy or power output to the crankshaft is identical. A desired driving point that attains the highest possible efficiency with respect to each amount of output energy is determined in advance. In order to allow the engine to be driven at the desired driving point, the controller controls the clutch motor and the assist motor as well as the fuel injection and the throttle valve position. Such control procedures of the power output apparatus enhance the energy efficiency of the whole power output apparatus.
摘要:
A power output apparatus 20 implements a smooth switching between the connection of a rotor-rotating shaft 38 of an assist motor 40 with a crankshaft 56 of an engine 50 and the connection of the rotor-rotating shaft 38 of the assist motor 40 with a drive shaft 22, and enables the power output from the engine 50 to be output to the drive shaft 22 with a high efficiency. The power output from the engine 50 is converted to a desired power by a clutch motor 30 having rotors 31 and 33 respectively linked with the crankshaft 56 and the drive shaft 22 and by the assist motor 40 connected to either the crankshaft 56 or the drive shaft 22 via a first clutch 45 and a second clutch 46, and is output to the drive shaft 22. The connection of the assist motor 40 is switched in the state where both the clutches 45 and 46 are set in ON position, when the revolving speed of the engine 50 is made coincident with the revolving speed of the drive shaft 22. This effectively reduces a variation in torque output to the drive shaft 22 in the course of the switching operation and enables the power to be output to the drive shaft 22 even in the course of the switching operation.