Abstract:
Embodiments of substrate supports having electrostatic chucks (ESCs) for use in substrate process chambers are provided herein. In some embodiments, a substrate support includes: an electrostatic chuck (ESC) having a top surface and a plurality of mesas extending upward from the top surface, wherein an upper surface of the plurality of mesas define a substrate support surface, wherein a total surface area of the substrate support surface is about 18 to about 40 percent a total surface area of the upper surface, and wherein the ESC includes a plurality of backside gas openings extending through the ESC; and one or more chucking electrodes disposed in the ESC.
Abstract:
In some embodiments, a process chamber for a microwave batch curing process includes: an annular body having an outer surface and an inner surface defining a central opening of the annular body, wherein the inner surface comprises a plurality of angled surfaces defining a first volume; a first lip extending radially outward from the outer surface of the annular body proximate a first end of the annular body; a second lip extending radially outward from the outer surface of the annular body proximate a second end of the annular body; an exhaust disposed between the first lip and the second lip and fluidly coupled to the first volume, wherein the exhaust comprises a plurality of first openings; a plurality of second openings fluidly coupled to the first volume, wherein the plurality of second openings are configured to expose the first volume to microwave energy; and one or more ports fluidly coupled to the first volume.
Abstract:
Embodiments of multi-chamber processing tools are provided herein. In some embodiments, a multi-chamber processing tool includes: a factory interface configured to receive a substrate; a pre-heat chamber directly coupled to the factory interface; a load lock chamber coupled to the factory interface and having a first slit valve disposed therebetween, wherein the load lock chamber is coupled to a pump configured to create a vacuum environment when the first slit valve is in a closed position; a degas chamber coupled to the factory interface and having a second slit valve, wherein the degas chamber is coupled to a second pump configured to create a vacuum environment when the second slit valve is in a closed position, and wherein the degas chamber includes a heat source; one or more process chambers; and a transfer chamber coupled to the load lock chamber, the degas chamber, and the one or more process chambers.
Abstract:
Methods and apparatus for processing a substrate are provided herein. For example, a method for processing a substrate comprises performing a first vacuum processing procedure on a substrate, obtaining temperature measurements of the substrate from a vacuum thermocouple, obtaining temperature measurements of the substrate from a non-contact infrared sensor, calibrating the non-contact infrared sensor based on the temperature measurements from the vacuum thermocouple and the temperature measurements from the non-contact infrared sensor, and performing a second vacuum processing procedure on the substrate using the calibrated non-contact infrared sensor.
Abstract:
Embodiments of process kits for use in a process chamber are provided herein. In some embodiments, a process kit for use in a process chamber, includes: a top plate having a central recess disposed in an upper surface thereof; a channel extending from an outer portion of the top plate to the central recess; a plurality of holes disposed through the top plate from a bottom surface of the recess to a lower surface of the top plate; a cover plate configured to be coupled to the top plate and to form a seal along a periphery of the central recess such that the covered recess forms a plenum within the top plate; and a tubular body extending down from the lower surface of the top plate and surrounding the plurality of holes, the tubular body further configured to surround a substrate support.
Abstract:
Embodiments described herein provide a semiconductor device and methods and apparatuses of forming the same. The semiconductor device includes a substrate having a source and drain region and a gate electrode stack on the substrate between the source and drain regions. In one embodiment, the method includes positioning a substrate within a processing chamber, wherein the substrate includes a source and drain region, a gate dielectric layer between the source and drain regions, and a conductive film layer on the gate dielectric layer. The method also includes depositing a refractory metal nitride film layer on the conductive film layer, depositing a silicon-containing film layer on the refractory metal nitride film layer, and depositing a tungsten film layer on the silicon-containing film layer.
Abstract:
Methods and apparatus for processing a substrate. For example, a processing chamber can include a power source, an amplifier connected to the power source, comprising at least one of a gallium nitride (GaN) transistor or a gallium arsenide (GaAs) transistor, and configured to amplify a power level of an input signal received from the power source to heat a substrate in a process volume, and a cooling plate configured to receive a coolant to cool the amplifier during operation.
Abstract:
An apparatus for determining temperatures of substrates in microwave and/or vacuum environments. A substrate holder with a plurality of support pins includes a temperature sensor assembly with at least a portion of a surface with a phosphorous coating is configured to be inserted in at least one pin support position from an inner area of the substrate holder and in at least one pin support position from an outer area of the substrate holder. The temperature sensor assembly includes a temperature sensor pin with a spring that is microwave transparent. The temperature sensor pin is made of a material with a thermal conductivity greater than approximately 200 W/mK and a low thermal mass which is microwave transparent. An optical transmission assembly is embedded into at least a portion of the substrate holder to receive light emissions from a surface of the temperature sensor pin.
Abstract:
Methods and apparatus for curing a substrate or polymer using variable microwave frequency are provided herein. In some embodiments, a method of curing a substrate or polymer using variable microwave frequency includes: contacting a substrate or polymer with a plurality of predetermined discontinuous microwave energy bandwidths or a plurality of predetermined discontinuous microwave energy frequencies to cure the substrate or polymer.
Abstract:
Methods and apparatus for measuring the temperature of epoxy resin in an electronics package are provided herein. In some embodiments, apparatus for encapsulating an electronics package includes: a process chamber having a chamber body enclosing a processing volume; a substrate support having a support surface for receiving and supporting a substrate for forming an electronics package; and a temperature sensor to measure a temperature of an epoxy resin in an electronics package. The temperature sensor includes: an input apparatus including at least a light source disposed outside the chamber body to provide an excitation light energy to a portion of the epoxy resin; and an output apparatus including at least a signal analyzer disposed outside the chamber body to detect fluorescent light energy emitted by the portion of the epoxy resin and determine a temperature of the epoxy resin based on the excitation light energy and the fluorescent light energy.