摘要:
A method of processing a substrate including depositing a transition layer and a dielectric layer on a substrate in a processing chamber are provided. The transition layer is deposited from a processing gas including an organosilicon compound and an oxidizing gas. The flow rate of the organosilicon compound is ramped up during the deposition of the transition layer such that the transition layer has a carbon concentration gradient and an oxygen concentration gradient. The transition layer improves the adhesion of the dielectric layer to an underlying barrier layer on the substrate.
摘要:
A method of depositing a organosilicate dielectric layer exhibiting high adhesion strength to an underlying substrate disposed within a single processing chamber without plasma arcing. The method includes positioning a substrate within a processing chamber having a powered electrode, flowing an interface gas mixture into the processing chamber, the interface gas mixture comprising one or more organosilicon compounds and one or more oxidizing gases, depositing a silicon oxide layer on the substrate by varying process conditions, wherein DC bias of the powered electrode varies less than 60 volts.
摘要:
Apparatus and methods for distributing gases into a processing chamber are disclosed. In one embodiment, the apparatus includes a gas distribution plate having a plurality of apertures disposed therethrough and a blocker plate having both a plurality of apertures disposed therethrough and a plurality of feed through passageways disposed therein. A first gas pathway delivers a first gas through the plurality of apertures in the blocker plate and the gas distribution plate. A bypass gas pathway delivers a second gas through the plurality of feed through passageways in the blocker plate and to areas around the blocker plate prior to the second gas passing through the gas distribution plate.
摘要:
A method of processing a substrate including depositing a transition layer and a dielectric layer on a substrate in a processing chamber are provided. The transition layer is deposited from a processing gas including an organosilicon compound and an oxidizing gas. The flow rate of the organosilicon compound is ramped up during the deposition of the transition layer such that the transition layer has a carbon concentration gradient and an oxygen concentration gradient. The transition layer improves the adhesion of the dielectric layer to an underlying barrier layer on the substrate.
摘要:
A method of depositing a organosilicate dielectric layer exhibiting high adhesion strength to an underlying substrate disposed within a single processing chamber without plasma arcing. The method includes positioning a substrate within a processing chamber having a powered electrode, flowing an interface gas mixture into the processing chamber, the interface gas mixture comprising one or more organosilicon compounds and one or more oxidizing gases, depositing a silicon oxide layer on the substrate by varying process conditions, wherein DC bias of the powered electrode varies less than 60 volts.
摘要:
Embodiments described herein relate to a method for processing a substrate. In one embodiment, the method includes introducing a gas mixture comprising a hydrocarbon source and a diluent gas into a deposition chamber located within a processing system, generating a plasma from the gas mixture in the deposition chamber at a temperature between about 200° C. and about 700° C. to form a low-hydrogen content amorphous carbon layer on the substrate, transferring the substrate into a curing chamber located within the processing system without breaking vacuum, and exposing the substrate to UV radiation within the curing chamber at a curing temperature above about 200° C.
摘要:
An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, a shield member disposed in the processing chamber below the substrate support, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source, and an electrode separated from the conductive gas distributor and the chamber body by electrical insulators. The electrode is also coupled to a source of electric power. The substrate support is formed with a stiffness that permits very little departure from parallelism. The shield member thermally shields a substrate transfer opening in the lower portion of the chamber body. A pumping plenum is located below the substrate support processing position, and is spaced apart therefrom.
摘要:
An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, a shield member disposed in the processing chamber below the substrate support, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor coupled to a power source, and an electrode separated from the conductive gas distributor and the chamber body by electrical insulators. The electrode is also coupled to a source of electric power. The substrate support is formed with a stiffness that permits very little departure from parallelism. The shield member thermally shields a substrate transfer opening in the lower portion of the chamber body. A pumping plenum is located below the substrate support processing position, and is spaced apart therefrom.
摘要:
A method of forming a graded dielectric layer on an underlying layer including flowing a mixture of a silicon-carbon containing gas, an oxygen containing gas and a carrier gas through a showerhead comprising a blocking plate and a faceplate to form an oxide rich portion of the graded dielectric layer, where the silicon-carbon containing gas has an initial flow rate, flowing the silicon-carbon containing gas at a first intermediate flow rate for about 0.5 seconds or longer, where the first intermediate flow rate is higher than the initial flow rate, and flowing the silicon-carbon containing gas at a fastest flow rate higher than the first intermediate flow rate to form a carbon rich portion of the graded dielectric layer.
摘要:
A method of forming a graded dielectric layer on an underlying layer including flowing a mixture of a silicon-carbon containing gas, an oxygen containing gas and a carrier gas through a showerhead comprising a blocking plate and a faceplate to form an oxide rich portion of the graded dielectric layer, where the silicon-carbon containing gas has an initial flow rate, flowing the silicon-carbon containing gas at a first intermediate flow rate for about 0.5 seconds or longer, where the first intermediate flow rate is higher than the initial flow rate, and flowing the silicon-carbon containing gas at a fastest flow rate higher than the first intermediate flow rate to form a carbon rich portion of the graded dielectric layer.