摘要:
A method and apparatus for forming solar cells is provided. In one embodiment, a photovoltaic device includes a first p-i-n junction cell formed on a substrate, wherein the p-i-n junction cell comprises a p-type silicon containing layer, an intrinsic type silicon containing layer formed over the p-type silicon containing layer, and a n-type silicon containing layer formed over the intrinsic type silicon containing layer, wherein the intrinsic type silicon containing layer comprises a first pair of microcrystalline layer and amorphous silicon layer.
摘要:
Adhesion of a porous low K film to an underlying barrier layer is improved by forming an intermediate layer lower in carbon content, and richer in silicon oxide, than the overlying porous low K film. This adhesion layer can be formed utilizing one of a number of techniques, alone or in combination. In one approach, the adhesion layer can be formed by introduction of a rich oxidizing gas such as O2/CO2/etc. to oxidize Si precursors immediately prior to deposition of the low K material. In another approach, thermally labile chemicals such as alpha-terpinene, cymene, and any other non-oxygen containing organics are removed prior to low K film deposition. In yet another approach, the hardware or processing parameters, such as the manner of introduction of the non-silicon containing component, may be modified to enable formation of an oxide interface prior to low K film deposition. In still another approach, parameters of ebeam treatment such as dosage, energy, or the use of thermal annealing, may be controlled to remove carbon species at the interface between the barrier and the low K film. In a further approach, a pre-treatment plasma may be introduced prior to low k deposition to enhance heating of the barrier interface, such that a thin oxide interface is formed when low K deposition gases are introduced and the low K film is deposited.
摘要:
Ultra low K nanoporous dielectric films may be formed by chemical vapor deposition of silicon-containing components and large non-silicon containing porogens having labile groups. In accordance with one embodiment of the present invention, a low K nanoporous film may be formed by the oxidative reaction between trimethylsilane (the silicon-containing component) and alpha-terpinene (the non-silicon containing component). In accordance with certain embodiments of the present invention, the oxidant can comprise other than molecular oxygen, for example water vapor introduced in-situ or remotely, and then exposed to RF energy to generate reactive ionic species.
摘要:
Methods and apparatus are provided for processing a substrate with an ultraviolet curing process. In one aspect, the invention provides a method for processing a substrate including depositing a silicon carbide dielectric layer on a substrate surface and curing the silicon carbide dielectric layer with ultra-violet curing radiation. The silicon carbide dielectric layer may comprise a nitrogen containing silicon carbide layer, an oxygen containing silicon carbide layer, or a phenyl containing silicon carbide layer. The silicon carbide dielectric layer may be used as a barrier layer, an etch stop, or as an anti-reflective coating in a damascene formation technique.
摘要:
The present invention generally provides an apparatus and method for eliminating the “first wafer effect” for plasma enhanced chemical vapor deposition (PECVD). One embodiment of the present invention provides a method for preparing a chamber after the chamber being idle for a period of time. The method comprises a cleaning step followed by a season step and a heating step adapted to the length of the idle time.
摘要:
Embodiments in accordance with the present invention relate to multi-stage curing processes for chemical vapor deposited low K materials. In certain embodiments, a combination of electron beam irradiation and thermal exposure steps may be employed to control selective outgassing of porogens incorporated into the film, resulting in the formation of nanopores. In accordance with one specific embodiment, a low K layer resulting from reaction between a silicon-containing component and a non-silicon containing component featuring labile groups, may be cured by the initial application of thermal energy, followed by the application of radiation in the form of an electron beam.
摘要:
The present invention generally provides an apparatus and method for reducing defects on films deposited on semiconductor substrates. One embodiment of the present invention provides a method for depositing a film on a substrate. The method comprises treating the substrate with a first plasma configured to reduce pre-existing defects on the substrate, and depositing a film comprising silicon and carbon on the substrate by applying a second plasma generated from at least one precursor and at least one reactant gas.
摘要:
Methods and apparatus are provided for processing a substrate with an ultraviolet curing process. In one aspect, the invention provides a method for processing a substrate including depositing a silicon carbide dielectric layer on a substrate surface and curing the silicon carbide dielectric layer with ultra-violet curing radiation. The silicon carbide dielectric layer may comprise a nitrogen containing silicon carbide layer, an oxygen containing silicon carbide layer, or a phenyl containing silicon carbide layer. The silicon carbide dielectric layer may be used as a barrier layer, an etch stop, or as an anti-reflective coating in a damascene formation technique.
摘要:
A method of depositing a organosilicate dielectric layer exhibiting high adhesion strength to an underlying substrate disposed within a single processing chamber without plasma arcing. The method includes positioning a substrate within a processing chamber having a powered electrode, flowing an interface gas mixture into the processing chamber, the interface gas mixture comprising one or more organosilicon compounds and one or more oxidizing gases, depositing a silicon oxide layer on the substrate by varying process conditions, wherein DC bias of the powered electrode varies less than 60 volts.
摘要:
A method of depositing a organosilicate dielectric layer exhibiting high adhesion strength to an underlying substrate disposed within a single processing chamber without plasma arcing. The method includes positioning a substrate within a processing chamber having a powered electrode, flowing an interface gas mixture into the processing chamber, the interface gas mixture comprising one or more organosilicon compounds and one or more oxidizing gases, depositing a silicon oxide layer on the substrate by varying process conditions, wherein DC bias of the powered electrode varies less than 60 volts.