Abstract:
The present invention is a semiconductor structure for light emitting devices that can emit in the red to ultraviolet portion of the electromagnetic spectrum. The semiconductor structure includes a Group III nitride active layer positioned between a first n-type Group III nitride cladding layer and a second n-type Group III nitride cladding layer, the respective bandgaps of the first and second n-type cladding layers being greater than the bandgap of the active layer. The semiconductor structure further includes a p-type Group III nitride layer, which is positioned in the semiconductor structure such that the second n-type cladding layer is between the p-type layer and the active layer.
Abstract:
In one embodiment, a lamp comprises an optically transmissive enclosure. An LED array is disposed in the optically transmissive enclosure operable to emit light when energized through an electrical connection. A gas is contained in the enclosure to provide thermal coupling to the LED array. The gas may include oxygen.
Abstract:
A lamp has an optically transmissive enclosure and a base defining a longitudinal axis of the lamp that extends from the base to the free end of the enclosure. An LED assembly is positioned in the optically transmissive enclosure. The LED assembly includes LEDs operable to emit light when energized through an electrical path from the base. The LED assembly is arranged such that the plurality of LEDs face perpendicularly to the longitudinal axis of the lamp. The emission profile of the LEDs being at least 120 degrees FWHM.
Abstract:
A high efficiency Group III nitride light emitting diode is disclosed. The diode includes a Group III nitride-based light emitting region including a plurality of Group III nitride-based layers. A lenticular surface directly contacts one of the Group III nitride-based layers of the light emitting region. The lenticular surface includes a transparent material that is different from the Group III nitride-based layer of the light emitting region that the lenticular surface directly contacts.
Abstract:
A high efficiency Group III nitride light emitting diode is disclosed. The diode includes a Group III nitride-based light emitting region including a plurality of Group III nitride-based layers. A lenticular surface directly contacts one of the Group III nitride-based layers of the light emitting region. The lenticular surface includes a transparent material that is different from the Group III nitride-based layer of the light emitting region that the lenticular surface directly contacts.
Abstract:
In one embodiment, a lamp comprises an optically transmissive enclosure. An LED array is disposed in the optically transmissive enclosure operable to emit light when energized through an electrical connection. A gas is contained in the enclosure to provide thermal coupling to the LED array. A board supports lamp electronics for the lamp and is located in the enclosure. The LED array is mounted to the board and LEDs are mounted on a submount formed to have a three dimensional shape. The board is electrically coupled to the LED array and the submount may be thermally coupled to the gas for dissipating heat from the plurality of LEDs.
Abstract:
A semiconductor light emitting apparatus includes an elongated hollow wavelength conversion tube that includes an elongated wavelength conversion tube wall having wavelength conversion material, such as phosphor, dispersed therein. A semiconductor light emitting device is oriented to emit light inside the elongated hollow wavelength conversion tube to impinge upon the elongated wavelength conversion tube wall and the wavelength conversion material dispersed therein. The elongated hollow wavelength conversion tube may have an open end, a crimped end, a reflective end, and/or other configurations. Multiples tubes and/or multiple semiconductor light emitting devices may also be used in various configurations. Related assembling methods are also described.
Abstract:
In one embodiment, a lamp comprises an optically transmissive enclosure. An LED array is disposed in the optically transmissive enclosure operable to emit light when energized through an electrical connection. A gas is contained in the enclosure to provide thermal coupling to the LED array. A board supports lamp electronics for the lamp and is located in the enclosure. The LED array is mounted to the board and LEDs are mounted on a submount formed to have a three dimensional shape. The board is electrically coupled to the LED array and the submount may be thermally coupled to the gas for dissipating heat from the plurality of LEDs.
Abstract:
A lamp has an optically transmissive enclosure and a base. A tower extends from the base into the enclosure and supports an LED assembly in the enclosure. The LED assembly comprises a plurality of LEDs operable to emit light when energized through an electrical path from the base. The tower and the LED assembly are arranged such that the plurality of LEDs are disposed about the periphery of the tower in a band and face outwardly toward the enclosure to create a source of the light that appears as a glowing filament. The tower forms part of a heat sink that transmits heat from the LED assembly to the ambient environment. The LED assembly has a three-dimensional shape. An electrical interconnect connects a conductor to the heat sink where the conductor is in the electrical path between the LED assembly and the base.
Abstract:
A lamp includes an optically transmissive enclosure for emitting an emitted light and a base connected to the enclosure. At least one first LED filament and at least one second LED filament are located in the enclosure and are operable to emit light when energized through an electrical path from the base. The first LED filament emits light having a first correlated color temperature (CCT) and the second LED filament emits light having a second CCT that are combined to generate the emitted light. A controller operates to change the CCT of the emitted light when the lamp is dimmed.