Abstract:
Flip chip LEDs incorporate multi-layer reflectors and light transmissive substrates patterned along an internal surface adjacent to semiconductor layers. A multi-layer reflector may include a metal layer and a dielectric layer containing conductive vias. Portions of a multi-layer reflector may wrap around a LED mesa including an active region, while being covered with passivation material. A substrate patterned along an internal surface together with a multi-layer reflector enables reduction of optical losses. A light transmissive fillet material proximate to edge emitting surfaces of an emitter chip may enable adequate coverage with lumiphoric material. An emitter chip may be elevated with increased thickness of solder material and/or contacts, and may reduce luminous flux loss when reflective materials are present on a submount. Methods for coating emitter chips with lumiphoric material include one or more of angled spray coating, fillet formation prior to spray coating, stencil island coating, and releasable tape coating.
Abstract:
Monolithic LED chips are disclosed comprising a plurality of active regions on submount, wherein the submount comprises integral electrically conductive interconnect elements in electrical contact with the active regions and electrically connecting at least some of the active regions in series. The submount also comprises an integral insulator element electrically insulating at least some of the interconnect elements and active regions from other elements of the submount. The active regions are mounted in close proximity to one another with at least some of the active regions having a space between adjacent ones of the active regions that is 10 percent or less of the width of one or more of the active regions. The space is substantially not visible when the LED chip is emitting, such that the LED chips emits light similar to a filament.
Abstract:
Monolithic LED chips are disclosed comprising a plurality of active regions on submount, wherein the submount comprises integral electrically conductive interconnect elements in electrical contact with the active regions and electrically connecting at least some of the active regions in series. The submount also comprises an integral insulator element electrically insulating at least some of the interconnect elements and active regions from other elements of the submount. The active regions are mounted in close proximity to one another with at least some of the active regions having a space between adjacent ones of the active regions that is 10 percent or less of the width of one or more of the active regions. The space is substantially not visible when the LED chip is emitting, such that the LED chips emits light similar to a filament.
Abstract:
An LED includes a mesa having a Group III Nitride mesa face and a mesa sidewall, on an underlying LED structure. The mesa face includes Group III Nitride surface features having tops that are defined by mask features, having bottoms, and having sides that extend along crystal planes of the Group III Nitride. The mask features may include a two-dimensional array of dots that are spaced apart from one another. Related fabrication methods are also disclosed.
Abstract:
A lamp comprises an enclosure having a reflective surface and an exit surface through which light is emitted from the enclosure and a base. A plurality of LEDs are located in the enclosure and are operable to emit light when energized through an electrical path from the base. The reflective surface comprises a first reflective layer applied to the enclosure and a second reflective layer over the first reflective layer. The first reflective layer is a metalized surface. The second layer comprises a transparent carrier such as silicone mixed with a reflective media such as TiO2, Barium Sulfate and/or ZnO or silver.
Abstract:
A phosphor-converted light emitting device includes a light emitting diode (LED) on a substrate, where the LED comprises a stack of epitaxial layers comprising a p-n junction. A wavelength conversion material is in optical communication with the LED. According to one embodiment of the phosphor-converted light emitting device, a selective filter is adjacent to the wavelength conversion material, and the selective filter comprises a plurality of nanoparticles for absorbing light from the LED not down-converted by the wavelength conversion material. According to another embodiment of the phosphor-converted light emitting device, a perpendicular distance between a perimeter of the LED on the substrate and an edge of the substrate is at least about 24 microns. According to another embodiment of the phosphor-converted light emitting device, the LED comprises a mirror layer on one or more sidewalls thereof for reducing light leakage through the sidewalls.
Abstract:
A light emitting device includes a Light Emitting Diode (LED) having a light emitting surface, a silicon nitride layer on the light emitting surface and a sealed environment surrounding the light emitting surface. The silicon nitride layer may be directly on and cover the light emitting surface. The silicon nitride layer may completely cover the light emitting surface. The silicon nitride layer may provide a substance blocking layer such as a moisture blocking layer and/or a carbon blocking layer that can prevent moisture and/or carbon, such as Volatile Organic Compounds (VOCs) that contain carbon, from reaching the light emitting surface.
Abstract:
Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror, such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer and adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.
Abstract:
A light emitting device includes a p-type semiconductor layer, an n-type semiconductor layer and an active region between the p-type semiconductor layer and the n-type semiconductor layer. A bond pad is provided on one of the p-type semiconductor layer or the n-type semiconductor layer, opposite the active region, the bond pad being electrically connected to the one of the p-type semiconductor layer or the n-type semiconductor layer. A conductive finger extends from and is electrically connected to the bond pad. A reduced conductivity region is provided in the light emitting device that is aligned with the conductive finger. A reflector may also be provided between the bond pad and the reduced conductivity region. A reduced conductivity region may also be provided in the light emitting device that is not aligned with the bond pad.
Abstract:
A crystalline material processing method includes forming subsurface laser damage at a first average depth position to form cracks in the substrate interior propagating outward from at least one subsurface laser damage pattern, followed by imaging the substrate top surface, analyzing the image to identify a condition indicative of presence of uncracked regions within the substrate, and taking one or more actions responsive to the analyzing. One potential action includes changing an instruction set for producing subsequent laser damage formation (at second or subsequent average depth positions), without necessarily forming additional damage at the first depth position. Another potential action includes forming additional subsurface laser damage at the first depth position. The substrate surface is illuminated with a diffuse light source arranged perpendicular to a primary substrate flat and positioned to a first side of the substrate, and imaged with an imaging device positioned to an opposing second side of the substrate.