Abstract:
A semiconductor memory structure (e.g., SRAM) includes vertical channels with a circular, square or rectangular cross-sectional shape. Each unit cell can include a single pull-up vertical transistor and either: one pull-down vertical transistor and one pass-gate vertical transistor; or two or more of each of the pull-down and pass-gate vertical transistors. The structure may be realized by providing adjacent layers of undoped semiconductor material, forming vertical channels for vertical transistors, the vertical channels situated on each of the adjacent layers, doping a first half of each of the adjacent layers with a n-type or p-type dopant, doping a second half of each of the adjacent layers with an opposite type dopant to that of the first half, forming wrap-around gates surrounding the vertical channels, and forming top electrodes for the vertical transistors.
Abstract:
One illustrative method disclosed herein includes forming first sacrificial gate structures above a fin for two active gates and a dummy gate, removing the first sacrificial gate structure for the dummy gate so as to define a cavity that exposes the fin while leaving the first sacrificial gate structures for the two active gates intact, etching through the cavity to form a trench in the fin under the cavity, forming a second sacrificial gate structure for the dummy gate, removing the first sacrificial gate structures for the two active gates and the second sacrificial gate structure for the dummy gate so as to define a replacement gate cavity for the two active gates and the dummy gate, and forming a replacement gate structure in each of the replacement gate cavities, wherein the replacement gate structure for the dummy gate extends into the trench in the fin.
Abstract:
One illustrative method disclosed herein includes forming first sacrificial gate structures above a fin for two active gates and a dummy gate, removing the first sacrificial gate structure for the dummy gate so as to define a cavity that exposes the fin while leaving the first sacrificial gate structures for the two active gates intact, etching through the cavity to form a trench in the fin under the cavity, forming a second sacrificial gate structure for the dummy gate, removing the first sacrificial gate structures for the two active gates and the second sacrificial gate structure for the dummy gate so as to define a replacement gate cavity for the two active gates and the dummy gate, and forming a replacement gate structure in each of the replacement gate cavities, wherein the replacement gate structure for the dummy gate extends into the trench in the fin.
Abstract:
Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes forming fin structures in a selected area of a semiconductor substrate. The method includes covering the fin structures and the semiconductor substrate with a mask and forming a trench in the mask to define no more than two exposed fin structures in the selected area. Further, the method includes removing the exposed fin structures to provide the selected area with a desired number of fin structures.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a first plurality of fins in the first region of the substrate, a second plurality of fins in the second region of the substrate, and a space in the substrate between two adjacent fins in the second region that corresponds to a first isolation region to be formed in the second region, forming a fin removal masking layer above the first and second regions of the substrate, wherein the fin removal masking layer has an opening positioned above at least a portion of at least one of the first plurality of fins, while masking all of the second plurality of fins in the second region and the space for the first isolation region, and performing an etching process through the first opening to remove the portions of the at least one of the first plurality of fins.
Abstract:
A method includes forming a raised isolation structure with a recess above a substrate, forming a gate structure above the fin, forming a plurality of spaced-apart buried fin contact structures within the recess that have an outer perimeter surface that contacts at least a portion of an interior perimeter surface of the recess and forming at least one source/drain contact structure for each of the buried fin contact structures. One device includes a plurality of spaced-apart buried fin contact structures positioned within a recess in a raised isolation structure on opposite sides of a gate structure. The upper surface of each of the buried fin contact structures is positioned below an upper surface of the raised isolation structure and an outer perimeter surface of each of the buried fin contact structures contacts at least a portion of an interior perimeter surface of the recess.
Abstract:
One illustrative device disclosed herein includes, among other things, an active region defined in a semiconductor substrate, a layer of material positioned above the substrate, a plurality of laterally spaced-apart source/drain trenches formed in the layer of material above the active region, a conductive source/drain contact structure formed within each of the source/drain trenches, a gate trench formed at least partially in the layer of material between the spaced-apart source/drain trenches in the layer of material, wherein portions of the layer of material remain positioned between the source/drain trenches and the gate trench, a gate structure positioned within the gate trench, and a gate cap layer positioned above the gate structure.
Abstract:
Methods for fabricating integrated circuits and for forming masks for fabricating integrated circuits are provided. An exemplary method for fabricating an integrated circuit includes providing a patternable structure having first and second regions and including upper and lower mandrel layers. The method etches upper mandrels from the upper mandrel layer in the first and second regions. The method includes forming first upper spacer structures having a first width adjacent upper mandrels in the first region and forming second upper spacer structures having a second width not equal to the first width adjacent upper mandrels in the second region. The method etches the lower mandrel layer using the first and second upper spacer structures as an etch mask to form lower mandrels. Further, the method includes forming spacers adjacent the lower mandrels and etching a material using the spacers as an etch mask to form variably spaced features.
Abstract:
One illustrative device disclosed herein includes, among other things, an active region defined in a semiconductor substrate, a layer of material positioned above the substrate, a plurality of laterally spaced-apart source/drain trenches formed in the layer of material above the active region, a conductive source/drain contact structure formed within each of the source/drain trenches, a gate trench formed at least partially in the layer of material between the spaced-apart source/drain trenches in the layer of material, wherein portions of the layer of material remain positioned between the source/drain trenches and the gate trench, a gate structure positioned within the gate trench, and a gate cap layer positioned above the gate structure.
Abstract:
A memory cell includes vertical transistors including first and second pass gate (PG) transistors, first and second pull-up (PU1 and PU2) transistors, and first and second pull-down (PD1 and PD2) transistors. A first bottom electrode connects bottom source/drain (SD) regions of PU1 and PU2. A second bottom electrode connects bottom SD regions of PD1 and PD2. A first shared contact connects the top SD region of PU2 to the gate structure of PU1. A second shared contact connects the top SD region of PD1 to the gate structure of PD2. A first top electrode is connected to the top SD regions of PG1, PU1 and the second shared contact to define a first storage node of the memory cell. A second top electrode is connected to the top SD regions of PG2, PU2 and the first shared contact to define a second storage node of the memory cell.