Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an exemplary embodiment, an integrated circuit includes a metal contact structure, an electrically conductive capping layer formed on the metal contact structure, and a conductive via electrically connected to the metal contact structure through the electrically conductive capping layer.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an exemplary embodiment, a method for fabricating integrated circuits includes forming a metal contact structure that is electrically connected to a device. A capping layer is selectively formed on the metal contact structure, and an interlayer dielectric material is deposited over the capping layer. A metal hard mask is deposited and patterned over the interlayer dielectric material to define an exposed region of the interlayer dielectric material. The method etches the exposed region of the interlayer dielectric material to expose at least a portion of the capping layer. The method includes removing the metal hard mask with an etchant while the capping layer physically separates the metal contact structure from the etchant. A metal is deposited to form a conductive via electrically connected to the metal contact structure through the capping layer.
Abstract:
When forming semiconductor devices with contact plugs comprising protection layers formed on sidewalls of etch stop layers to reduce the risk of shorts, the protection layers may be formed by performing a sputter process to remove material from a contact region and redeposit the removed material on the sidewalls of the etch stop layers.
Abstract:
A method of manufacturing a semiconductor device comprising a capacitor structure is provided, including the steps of forming a first metallization layer comprising a first dielectric layer and a first conductive layer functioning as a lower electrode for the capacitor structure over a semiconductor substrate, forming a barrier layer functioning as a capacitor insulator for the capacitor structure on the first metallization layer, forming a metal layer on the barrier layer and etching the metal layer to form an upper electrode of the capacitor structure.
Abstract:
Integrated circuits with strained silicon and methods for fabricating such integrated circuits are provided. An integrated circuit includes a stack with a surface layer, an intermediate layer, and a base layer, where the surface layer overlies the intermediate layer, and the intermediate layer overlies the base layer. The surface layer and the base layer include strained silicon, where the silicon atoms are stretched beyond a normal crystalline silicon interatomic distance. The intermediate layer includes crystalline silicon germanium.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an exemplary embodiment, a method for fabricating integrated circuits includes forming a metal contact structure that is electrically connected to a device. A capping layer is selectively formed on the metal contact structure, and an interlayer dielectric material is deposited over the capping layer. A metal hard mask is deposited and patterned over the interlayer dielectric material to define an exposed region of the interlayer dielectric material. The method etches the exposed region of the interlayer dielectric material to expose at least a portion of the capping layer. The method includes removing the metal hard mask with an etchant while the capping layer physically separates the metal contact structure from the etchant. A metal is deposited to form a conductive via electrically connected to the metal contact structure through the capping layer.
Abstract:
Methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes densifying an upper-surface portion of an ILD layer of dielectric material that overlies a metallization layer above a semiconductor substrate to form a densified surface layer of dielectric material. The densified surface layer and the ILD layer are etched through to expose a metal line of the metallization layer.
Abstract:
A semiconductor device includes a first metallization layer including a first dielectric layer. A first conductive layer and a first conductive structure are embedded in the first dielectric layer. A second dielectric layer is disposed on the first metallization layer. A second conductive layer is disposed on the second dielectric layer and has a lateral dimension in a lateral direction larger than a lateral dimension of the first conductive layer in the lateral direction. A third dielectric layer is disposed on the second conductive layer. A first contact is disposed in the third dielectric layer and extends through the second conductive structure in a first peripheric region thereof that does not overlap the first conductive layer to contact the first conductive structure. A capacitor structure includes the first conductive layer, the second dielectric layer and the second conductive layer.
Abstract:
A method includes providing a semiconductor structure. The semiconductor structure includes an electrically conductive feature including a first metal, a dielectric material provided over the electrically conductive feature and a hardmask. The hardmask includes a hardmask material and is provided over the dielectric material. An opening is provided in the interlayer dielectric and the hardmask. A portion of the electrically conductive feature is exposed at a bottom of the opening. The hardmask is removed. The removal of the hardmask includes exposing the semiconductor structure to an etching solution including hydrogen peroxide and a corrosion inhibitor. After the removal of the hardmask, the semiconductor structure is rinsed. Rinsing the semiconductor structure includes exposing the semiconductor structure to an alkaline rinse solution.
Abstract:
A semiconductor device includes a first metallization layer including a first dielectric layer. A first conductive layer and a first conductive structure are embedded in the first dielectric layer. A second dielectric layer is disposed on the first metallization layer. A second conductive layer is disposed on the second dielectric layer and has a lateral dimension in a lateral direction larger than a lateral dimension of the first conductive layer in the lateral direction. A third dielectric layer is disposed on the second conductive layer. A first contact is disposed in the third dielectric layer and extends through the second conductive structure in a first peripheric region thereof that does not overlap the first conductive layer to contact the first conductive structure. A capacitor structure includes the first conductive layer, the second dielectric layer and the second conductive layer.