Abstract:
A reactor has an inner surface accessible to the hydrocarbon and comprising a sintered product of at least one of cerium oxide, zinc oxide, tin oxide, zirconium oxide, boehmite and silicon dioxide, and a perovskite material of formula : AaBbCcDd03-δ. 0
Abstract:
A material is described of formula NaxMyAlaSibOδ with Face Centered Cubic (fcc) lattices forming F-4 3 m cubic structure, wherein M is at least one of lithium, potassium, rubidium, caesium, vanadium, chromium, iron, cobalt, nickel, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold, and cerium; 0 0; 1≦a≦3; 1≦b≦3; and 0
Abstract:
A gas turbine component includes a substrate and a corrosion resistant layer coupled to the substrate. The corrosion resistant layer includes zirconium silicate and is configured to protect the substrate from exposure to a vanadium corrodent.
Abstract:
A reactor has an inner surface accessible to the hydrocarbon and comprising a sintered product of at least one of cerium oxide, zinc oxide, tin oxide, zirconium oxide, boehmite and silicon dioxide, and a perovskite material of formula: AaBbCcDd03−δ. 0
Abstract:
A method for cracking hydrocarbon, comprises: providing steam and hydrocarbon; and feeding steam and hydrocarbon into a reactor accessible to hydrocarbon and comprising a perovskite material of formula AaBbCcDdO3-δ, wherein 0
Abstract:
A method for oxidizing a carbonaceous material, the method comprising contacting the carbonaceous material with an effective amount of a catalytic material of formula AxMyWOz, and initiating the oxidization of the carbonaceous material at a first temperature lower than a second temperature at which the carbonaceous material is initiated to oxidize without a catalyst, wherein A is at least one of cesium and potassium, M is different from A and is at least one of cesium, potassium, magnesium, calcium, strontium, barium, iron, cobalt, nickel, ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and bismuth, 0≦x≦1, 0≦y≦1, 2.2≦z≦3, when x=0, y>0, and when y=0, x>0.
Abstract:
A reactor has an inner surface accessible to the hydrocarbon and comprising a sintered product of at least one of cerium oxide, zinc oxide, tin oxide, zirconium oxide, boehmite and silicon dioxide, and a perovskite material of formula: AaBbCcDdO3-δ. 0
Abstract:
An article including a metal substrate, an anti-coking catalyst layer and an alumina barrier layer disposed between the metal substrate and the anti-coking catalyst layer is provided. A process for making the article is also provided.
Abstract:
A method for converting carbon into a carbon oxide, comprises: contacting carbon with steam in presence of a carnegieite-like material of formula (Na2O)xNa2[Al2Si2O8], wherein 0
Abstract:
A reactor having an inner surface accessible to the hydrocarbon and providing a sintered product of at least one of cerium oxide, zinc oxide, tin oxide, zirconium oxide, boehmite and silicon dioxide, and a perovskite material of formula AaBbCcDdO3−δ. 0