Abstract:
A lift pin mechanism employed within a process module includes a plurality of lift pins distributed uniformly along a circumference of a lower electrode defined in the process module. Each lift pin includes a top member that is separated from a bottom member by a collar defined by a chamfer. A sleeve is defined in a housing within a body of the lower electrode on which a substrate is received for processing. The housing is disposed below a mid ring that is defined in the lower electrode. The collar of the lift pin is used to engage with a bottom side of the sleeve, and a top side of the sleeve is configured to engage with the mid ring, when the lift pins are activated. An actuator coupled to each of the plurality of lift pins and an actuator drive connected to the actuators is used to drive the plurality of lift pins. A controller is coupled to the actuator drive to control movement of the plurality of lift pins.
Abstract:
An electrostatic chuck for a substrate processing system is provided. The electrostatic chuck includes: a top plate configured to electrostatically clamp to a substrate and formed of ceramic; an intermediate layer disposed below the top plate; and a baseplate disposed below the intermediate layer and formed of ceramic. The intermediate layer bonds the top plate to the baseplate.
Abstract:
A method for electrostatically clamping an edge ring in a plasma processing chamber with an electrostatic ring clamp with at least one ring backside temperature channel for providing a flow of gas to the edge ring is provided. A vacuum is provided to the at least one ring backside temperature channel Pressure in the backside temperature channel is measured. An electrostatic ring clamping voltage is provided when the pressure in the backside temperature channel reaches a threshold maximum pressure. The vacuum to the backside temperature channel is discontinued. Pressure in the backside temperature channel is measured. If pressure in the backside temperature channel rises faster than a threshold rate, then sealing failure is indicated. If pressure in the backside temperature channel does not rise faster than the threshold rate, a plasma process is continued, using the backside temperature channel to regulate a temperature of the edge ring.
Abstract:
An edge ring for use in a plasma processing chamber with a chuck is provided. An edge ring body has a first surface to be placed over and facing the chuck, wherein the first surface forms a ring around an aperture. A first elastomer ring is integrated to the first surface and extending around the aperture.
Abstract:
An electrostatic chuck for a substrate processing system is provided. The electrostatic chuck includes: a top plate configured to electrostatically clamp to a substrate and formed of ceramic; an intermediate layer disposed below the top plate; and a baseplate disposed below the intermediate layer and formed of ceramic. The intermediate layer bonds the top plate to the baseplate.
Abstract:
A substrate processing apparatus for processing substrates comprises a processing chamber in which a substrate is processed. A process gas source is adapted to supply process gas into the processing chamber. A RF energy source is adapted to energize the process gas into a plasma state in the processing chamber. A vacuum source is adapted to exhaust byproducts of the processing from the processing chamber. The processing chamber includes an electrostatic chuck assembly having a layer of ceramic material that includes an upper electrostatic clamping electrode and at least one RF electrode, a temperature controlled RF powered baseplate, and at least one annular electrically conductive gasket extending along an outer portion of an upper surface of the temperature controlled RF powered baseplate. The at least one annular electrically conductive gasket electrically couples the upper surface of the temperature controlled RF powered baseplate to the at least one RF electrode.
Abstract:
An edge ring is provided for use with an electrostatic wafer chuck and an electrostatic ring chuck with a central aperture with a cooling groove and with ring clamping electrodes and at least one ring backside temperature channel to regulate the temperature of the edge ring. The edge ring comprises an edge ring body to be placed over the electrostatic ring chuck with ring clamping electrodes, wherein the edge ring body comprises conductive portions which are placed over the ring clamping electrodes, when the edge ring body is placed over the electrostatic ring chuck and a first elastomer ring integrated to a first surface of the edge ring body and surrounding a central aperture of the first surface, wherein when the edge ring body is placed over the electrostatic ring chuck, the first elastomer ring is used to seal the cooling groove.
Abstract:
A semiconductor wafer processing apparatus for processing semiconductor wafers comprises a semiconductor wafer processing chamber in which a semiconductor wafer is processed, a process gas source in fluid communication with the processing chamber adapted to supply process gas into the processing chamber, a vacuum source adapted to exhaust process gas and byproducts of the processing from the processing chamber, and an electrostatic chuck assembly. The electrostatic chuck assembly comprises a support surface in a layer of ceramic material on which the semiconductor wafer is supported during processing of the wafer in the chamber, at least one electrostatic clamping electrode embedded in the layer of ceramic material, the at least one electrostatic clamping electrode operable to apply an electrostatic clamping force to the wafer on the support surface when an electrostatic clamping voltage is applied to the clamping electrode, and at least one declamping electrode embedded in the layer of ceramic material above the at least one electrostatic clamping electrode operable to provide a path for draining any residual charge between the wafer and the support surface when the electrostatic clamping voltage is no longer applied to the clamping electrode.
Abstract:
A method for making a component for use in a semiconductor processing chamber is provided. A component body is formed from a conductive material having a coefficient of thermal expansion of less than 10.0×10−6/K. A metal oxide layer is then disposed over a surface of the component body.
Abstract:
An electrostatic chuck for a substrate processing system includes a monolithic body made of ceramic. A plurality of first electrodes are arranged in the monolithic body adjacent to a top surface of the monolithic body and that are configured to selectively receive a chucking signal. A gas channel is formed in the monolithic body and is configured to supply back side gas to the top surface. Coolant channels are formed in the monolithic body and are configured to receive fluid to control a temperature of the monolithic body.