Abstract:
Compositions and methods for detecting the activity of an ion channel in a cell are described. The methods include providing a loading buffer solution to the cell, where the loading buffer includes a thallium ion indicator and optionally chloride ions, and providing a stimulus buffer that includes thallium ions to the cell. Providing the stimulus buffer can cause thallium ion influx into or efflux out of the cell through the ion channel. After providing the stimulus buffer, a change in at least one optical property of the thallium ion indicator is detected in response to thallium influx or efflux, thereby detecting the activity of the ion channel.
Abstract:
Disclosed herein are compounds, compositions, methods and kits for detecting pH in samples using pH-sensitive fluorescent dyes. The compounds disclosed herein are novel xanthene-derivative dyes comprising an aniline moiety with one or more electron donating groups, which dyes are for detecting pH in samples either in vitro or in vivo. Also described herein are processes for preparing said dyes for use in the disclosed compositions, methods and kits.
Abstract:
Various cell analysis systems of the present teachings can measure the electrical and metabolic activity of single, living cells with subcellular addressability and simultaneous data acquisition for between about 10 cells to about 500,000 cells in a single analysis. Various sensor array devices of the present teachings can have sensor arrays with between 20 million to 660 million ChemFET sensors built into a massively paralleled array and can provide for simultaneous measurement of cells with data acquisition rates in the kilohertz (kHz) range. As various ChemFET sensor arrays of the present teachings can detect chemical analytes as well detect changes in cell membrane potential, various cell analysis systems of the present teachings also provide for the controlled chemical and electrical interrogation of cells.
Abstract:
The present invention relates to methods for detecting the activity of an ion channel in a cell. The methods comprise providing a loading buffer solution to a cell that has an ion channel. The loading buffer comprises at least one thallium indicator (e.g., an environmentally sensitive, luminescent dye) and a physiological concentration of chloride ions. The methods further comprise providing a stimulus buffer to the cell, wherein the stimulus buffer comprises thallium (e.g., thallium ions). Providing the stimulus buffer causes thallium influx into the cell through the ion channel. After providing the stimulus buffer, the luminescence (e.g., fluorescence) of the dye in the cell is detected. The luminescence of the dye can change in the presence or absence of thallium. The methods may be used to measure influx or efflux of thallium through an ion channel.
Abstract:
The present invention relates to methods for detecting the activity of an ion channel in a cell. The methods comprise providing a loading buffer solution to a cell that has an ion channel. The loading buffer comprises at least one thallium indicator (e.g., an environmentally sensitive, luminescent dye) and a physiological concentration of chloride ions. The methods further comprise providing a stimulus buffer to the cell, wherein the stimulus buffer comprises thallium (e.g., thallium ions). Providing the stimulus buffer causes thallium influx into the cell through the ion channel. After providing the stimulus buffer, the luminescence (e.g., fluorescence) of the dye in the cell is detected. The luminescence of the dye can change in the presence or absence of thallium. The methods may be used to measure influx or efflux of thallium through an ion channel.
Abstract:
A new class of pH sensitive fluorescent dyes and assays relating thereto are described. The dyes and assays are particularly suited for biological applications including phagocytosis and monitoring intracellular processes. The pH sensitive fluorescent dyes of the present invention include compounds of Formula I: wherein the variables are described throughout the application.
Abstract:
Systems, devices and methods for cell analysis provide an end user with real-time cell analysis and imaging of single cells in a population. Various cell analysis systems can provide both optical imaging, as well as electroscopic imaging, which is an image of cellular response as detected by sensors covering a cell footprint or cellular efflux. An automated fluidic system can provide an end-user selected sequence of reagents to cells, while precision controlled sensor array device thermostatting, and analysis compartment environmental control provide consistency in the cell analysis system environment.
Abstract:
Embodiments herein provide methods of differentiating neural stem cells to neuronal cells while concomitantly retarding neural stem cell proliferation. Resultant cultures demonstrate reduced clumping of cells, increased purity of neuronal cells and accelerated electrophysiology as compared to control methods.
Abstract:
Embodiments herein provide methods of differentiating neural stem cells to neuronal cells while concomitantly retarding neural stem cell proliferation. Resultant cultures demonstrate reduced clumping of cells, increased purity of neuronal cells and accelerated electrophysiology as compared to control methods.