Abstract:
A method for manufacturing an optical-semiconductor device, including forming a plurality of first and second electrically conductive members that are disposed separately from each other on a support substrate; providing a base member formed from a light blocking resin between the first and second electrically conductive members; mounting an optical-semiconductor element on the first and/or second electrically conductive member; covering the optical-semiconductor element by a sealing member formed from a translucent resin; and obtaining individual optical-semiconductor devices after removing the support substrate.
Abstract:
A light emitting device includes a mounting board, a light emitting element, first and second light reflecting members, a light transmissive member and a sealing member. The first light reflecting member surrounds a lateral surface of the light emitting element while a top surface of the light emitting element is exposed from the first light reflecting member. The second light reflecting member surrounds an outer periphery of the light emitting element in a plan view. The second light reflecting member is in contact with the first light reflecting member with at least a part of the second light reflecting member being positioned higher than the first light reflecting member. The light transmissive member is disposed inside the second light reflecting member. The light transmissive member includes a wavelength conversion substance. The sealing member covers the first and second light reflecting members and the light transmissive member.
Abstract:
A light emitting device includes a semiconductor light emitting element; and a light reflective member having a multilayer structure and covering the side faces of the semiconductor light emitting element. The light reflective member includes: a first layer disposed on an inner, semiconductor light emitting element side, the first layer comprising a light-transmissive resin containing a light reflective substance, and a second layer disposed in contact with an outer side of the first layer, the second layer comprising a light-transmissive resin containing the light reflective substance at a lower content than that of the first layer.
Abstract:
A light emitting device includes at least one semiconductor light emitting element, and a wavelength conversion layer which is formed on a surface of the semiconductor light emitting element and which includes a resin layer containing a wavelength conversion member for converting a wavelength of light emitted from the semiconductor light emitting element. The wavelength conversion layer covers an upper surface or the upper surface and a side surface of the semiconductor light emitting element. A content of an inorganic material including the wavelength conversion member, or a content of an inorganic material including the wavelength conversion member and an inorganic filler, in the resin layer is 30% by mass or more and 99% by mass or less.
Abstract:
A light emitting device including; a base body having a base material that includes a first main face that has a lengthwise direction and a short-side direction that is perpendicular to the lengthwise direction, a second main face on the opposite side from the first main face, a first end face that extends in the lengthwise direction, and a second end face that extends in the short-side direction, and connection terminals that are provided on the first main face of the base material; and a light emitting element that is installed on the first main face and is connected to the connection terminals, the first end face of the base material has a recess that is contiguous with the first main face and the second end face and/or is contiguous with the second main face and the second end face, a length of the recess in a lengthwise direction is greater than a depth in a short-side direction, and the connection terminals are provided extending over the recess.
Abstract:
Provided is a light emitting device having a phosphor layer on a surface of a semiconductor light emitting element and achieving an even light distribution color, and a method of manufacturing the same. A method of manufacturing a light emitting device includes arranging a plurality of semiconductor light emitting elements spaced apart from each other on an expandable sheet, spraying a slurry containing a solvent, a thermosetting resin, and phosphor particles, onto an entire surface of the sheet having the arranged semiconductor light emitting elements to form a resin layer, pre-curing the resin layer, disuniting the resin layer formed on the surface of the semiconductor light emitting element from the resin layer formed on the sheet by expanding the sheet, and main curing the resin layer, which steps are performed in this order.
Abstract:
A method for manufacturing a circuit board constituted by a light emitting device and a mounting board includes the steps of: conveying the light emitting device onto the mounting board in a state in which a top face is chucked by a nozzle so that the nozzle and an exposed part of a first terminal part of the light emitting device are in contact; and placing the light emitting device onto the mounting board so that the first terminal part and a wiring component are in contact in a state in which the top face is chucked by the nozzle.
Abstract:
A lead frame of high quality which can endure direct bonding to the electrodes of a semiconductor element and a metal member, and a semiconductor device of high reliability which utilizing the lead frame. The lead frame includes a pair of lead frame portions which are arranged spaced apart from and opposite to each other to be electrically connected to a pair of electrodes of a semiconductor element respectively, and a pair of support bars which are arranged spaced apart from the lead portions and extending from a side of either one of the lead portions to a side of the other lead portion.
Abstract:
A manufacturing method of a processed resin substrate includes: preparing a resin substrate including a resin layer and a metal layer that covers at least a part of one surface of the resin layer; and forming a through hole in the resin substrate by irradiating the resin substrate with pulsed laser light. In the forming of the through hole, an interval of irradiation of the pulsed laser light at each point on the resin substrate is 5 msec or more.
Abstract:
A light emitting device includes a mounting board, a light emitting element, first and second light reflecting members, a light transmissive member, and a sealing member. The first light reflecting member surrounds a lateral surface of the light emitting element while a top surface is exposed. The second light reflecting member surrounds an outer periphery of the light emitting element, and is in contact with the first light reflecting member with at least a part of the second light reflecting member being positioned higher than the first light reflecting member. The light transmissive member includes a wavelength conversion substance, and is disposed inside the second light reflecting member and positioned higher than a lower surface of the light emitting element. The sealing member covers the second light reflecting member and the light transmissive member. An outer edge of the sealing member coincides with an outer edge of the mounting board.