Abstract:
Provided is a receiving circuit that operates in a power supply system different from a transmitting circuit outputting a transmission signal and receives the transmission signal through an AC coupling device where a primary coil through which the transmission signal flows and a secondary coil having a center tap to which a specified voltage is supplied from an external terminal are magnetically coupled, which includes a pulse width amplifier circuit that holds pulse signals appearing at both ends of the secondary coil for a specified period of time and outputs them as hold signals, respectively, and a differential amplifier that compares a voltage of the hold signal and a voltage of the hold signal and outputs a comparison result.
Abstract:
The number of ICs used for a power converter is reduced. The power converter includes n power transistors each having an emitter terminal or a source terminal connected to a common line, and driver ICs. Each of the driver ICs includes n pre-drivers that drive the respective n power transistors, and a receiver circuit that is integrated monolithically with the n pre-drivers. The receiver circuit is coupled with a transmitter circuit by AC coupling, and outputs a control signal that controls the n pre-drivers in response to a signal received from the transmitter circuit.
Abstract:
In a semiconductor device, a transmitting circuit generates a delayed data signal and a first delayed retransmission request signal by delaying a data signal and a first retransmission request signal, respectively, and outputs a pulse signal at an edge of the delayed data signal and the first delayed retransmission request signal and prohibits output of the pulse signal at an edge of the first delayed retransmission request signal during a specified period across an edge of the delayed data signal.
Abstract:
A receiver includes a positive pulse determination circuit and a negative pulse determination circuit. The positive pulse determination circuit outputs a first L-level between when a pulse signal having a negative amplitude is detected and when neither a pulse signal having a positive amplitude nor a pulse signal having a negative amplitude is detected; otherwise a first H-level if a pulse signal having a positive amplitude is detected during another period. The negative pulse determination circuit outputs a second L-level between when a pulse signal having a positive amplitude is detected and when neither a pulse signal having a positive amplitude nor a pulse signal having a negative amplitude is detected; otherwise a second H-level is output if a pulse signal having a negative amplitude is detected during the other period.
Abstract:
An object of the invention is to improve precision of current detection in a switching system having plural switching circuits. A first PWM timing generation circuit generates an edge timing of a PWM signal by using a comparison value and a count value and drives a first switching circuit. A second PWM timing generation circuit generates an edge timing of a PWM signal of plural phases by using a comparison value and a count value and drives a second switching circuit. One of the switching circuits is an inverter circuit of a common shunt type in which a shunt resistor is provided commonly for plural phases. One of the PWM timing generation circuits shifts the generated edge timing so that an interval between an edge timing of one of the circuits and an AD conversion timing of the other becomes equal to or larger than a predetermined reference value.
Abstract:
A power control circuit according to one embodiment includes an H-bridge circuit formed using a plurality of power transistors. The power transistors are respectively connected to current measurement circuits that measure currents flowing through the power transistors. Each of the power transistors includes a main emitter and a sense emitter through which a current corresponding to a current flowing through the main emitter flows. Each of the current measurement circuits measures a current flowing through each of the power transistors by using a current flowing through the sense emitter included in the power transistor. A control circuit controls the power transistors based on current values respectively measured by the current measurement circuits.
Abstract:
A semiconductor device includes an AC coupling element, and a temperature monitoring unit that outputs a temperature monitor signal, the temperature monitoring unit has a first temperature monitoring element that outputs the temperature monitor signal, and the first temperature monitoring element is arranged in a region immediately below or a region adjacent to the AC coupling element.
Abstract:
A semiconductor device has a chip mounting part, a first semiconductor chip, and a second semiconductor chip. The first semiconductor chip is mounted over the chip mounting part in a direction in which its first principal plane faces the chip mounting part. A part of the second semiconductor chip is mounted over the chip mounting part in a direction in which its third principal plane faces the first semiconductor chip. The element mounting part has a notch part. A part of the second semiconductor chip overlaps the notch part. In a region of the third principal plane of the second semiconductor chip that overlaps the notch part, a second electrode pad is provided.
Abstract:
A semiconductor device includes a galvanic isolator; a transmitting circuit that transmits a transmission signal via the galvanic isolator; a receiving circuit that receives a received signal corresponding to the transmission signal via the galvanic isolator; an encoding circuit that encodes two input signals and generates the transmission signal; and a decoding circuit that decodes the two input signals from the received signals.
Abstract:
A drive device comprises a sensor for detecting a state of stress applied to a power transistor, a threshold voltage setting circuit for outputting a threshold voltage, an anomaly monitor circuit for determining whether or not a state of stress is abnormal by comparing a detected voltage of the sensor with the threshold voltage, and a control circuit for fixing the power transistor to either on or off when the state of stress is determined to be abnormal by the anomaly monitor circuit. When an operating mode is a test mode, the control circuit tests whether the anomaly monitor circuit determines the state of the stress is abnormal or not by switching a level of the threshold voltage set by the threshold voltage setting circuit so as to determine that a state of the stress applied to the power transistor is abnormal in the normally operating anomaly monitor circuit.