Abstract:
Provided is a method of manufacturing a light-emitting diode (LED) package. The method includes: preparing a support structure on which a plurality of LED chips, each of which includes a semiconductor stack structure, and a light-transmissive material layer covering the plurality of LED chips are formed; mounting the support structure, on which the LED chips and the light-transmissive material layer are formed, on a cutting stage; and cutting the light-transmissive material layer, the semiconductor stack structure, and the support structure between the plurality of LED chips, by using a cutting device having a pattern blade on the cutting stage to singulate each of the individual LED packages.
Abstract:
A broadcast receiving system including a broadcast receiving apparatus and a controlling method thereof are disclosed. The broadcast receiving apparatus includes a tuner configured to receive a broadcast signal including broadcast data from a broadcast transmitting apparatus, a communicator configured to receive an additional signal including broadcast data and header information regarding the broadcast data from a reference apparatus, and a processor configured to determine the broadcast data included in the additional signal based on the header information and align the broadcast data received from the broadcast transmitting apparatus by using the broadcast data included in the additional signal.
Abstract:
Provided is a nano-structured light-emitting device including: a first type semiconductor layer; a plurality of nanostructures which are formed on the first type semiconductor layer and include nanocores, and active layers and second type semiconductor layers that enclose surfaces of the nanocores; an electrode layer which encloses and covers the plurality of nanostructures; and a plurality of resistant layers which are formed on the electrode layer and respectively correspond to the plurality of nanostructures.
Abstract:
A receiver and a detecting method thereof are provided. The receiver includes a plurality of antennas receiving a transmitted signal through multiple paths; and an equalizer collecting a plurality of sample signals by reflecting signals received in other antennas in the signals received in the plurality of antennas, and detecting a symbol of the transmitted signal by combining the plurality of sample signals that are collected with each other.
Abstract:
A semiconductor light-emitting device includes a first conductive type semiconductor layer having a main surface, a plurality of vertical type light-emitting structures protruding upward from the first conductive type semiconductor layer; a transparent electrode layer covering the plurality of vertical type light-emitting structures; and an insulation-filling layer disposed on the transparent electrode layer. The insulation-filling layer extends parallel to the first conductive type semiconductor layer so as to cover the plurality of vertical type light-emitting structures. A selected one of the first conductive type semiconductor layer and the insulation-filling layer, which is disposed on a light transmission path through which light generated from the plurality of vertical type light-emitting structures is radiated externally, has an uneven outer surface. The uneven outer surface is opposite to an inner surface of the selected one, and the inner surface faces the plurality of vertical type light-emitting structures.
Abstract:
A nano-structured light-emitting device includes a plurality of light-emitting nanostructures each having a resistant layer disposed thereon. The device includes a first semiconductor layer of a first conductivity type, and a plurality of nanostructures disposed on the first semiconductor layer. Each nanostructure includes a nanocore, and an active layer and a second semiconductor layer of a second conductivity type that enclose surfaces of the nanocores. An electrode layer encloses and covers the plurality of nanostructures A plurality of resistant layers are disposed on the electrode layer and each corresponds to a respective nanostructure of the plurality of nanostructures.
Abstract:
A nano-structured light-emitting device including a first semiconductor layer; a nano structure formed on the first semiconductor layer. The nano structure includes a nanocore, and an active layer and a second semiconductor layer that are formed on a surface of the nanocore, and of which the surface is planarized. A conductive layer surrounds sides of the nano structure, a first electrode is electrically connected to the first semiconductor layer and a second electrode is electrically connected to the conductive layer.
Abstract:
A light-emitting device includes a first conductive semiconductor layer formed on a substrate, a mask layer formed on the first conductive semiconductor layer and having a plurality of holes, a plurality of vertical light-emitting structures vertically grown on the first conductive semiconductor layer through the plurality of holes, a current diffusion layer surrounding the plurality of vertical light-emitting structures on the first conductive semiconductor layer, and a dielectric reflector filling a space between the plurality of vertical light-emitting structures on the current diffusion layer.
Abstract:
A light-emitting diode (LED) package includes a light-emitting structure, a transmissive material layer on the light-emitting structure, and a support structure covering at least a portion of a side surface of the transmissive material layer, a side surface of the light-emitting structure, and at least a portion of a bottom surface of the light-emitting structure.
Abstract:
A nano-structured light-emitting device including a first semiconductor layer; a nano structure formed on the first semiconductor layer. The nano structure includes a nanocore, and an active layer and a second semiconductor layer that are formed on a surface of the nanocore, and of which the surface is planarized. A conductive layer surrounds sides of the nano structure, a first electrode is electrically connected to the first semiconductor layer and a second electrode is electrically connected to the conductive layer.