Abstract:
A semiconductor device and a method of fabricating the same, the device including a substrate having a transistor formed thereon; a plurality of lower electrodes formed on the substrate; a first supporter and a second supporter on the plurality of lower electrodes; a dielectric film formed on the lower electrode, the first supporter, and the second supporter; and an upper electrode formed on the dielectric film, wherein the first and second supporters are positioned between the lower electrodes, and the first and second supporters include a first material and a second material.
Abstract:
A method of manufacturing a variable resistance memory device includes: forming an array of memory cells on a substrate, each memory cell including a variable resistance structure and a switching element; and forming a sidewall insulating layer covering a sidewall of the switching element. The forming the sidewall insulating layer includes: a preliminary step of supplying a silicon source to an exposed sidewall of the switching element; and a main step of performing a process cycle a plurality of times, the process cycle comprising supplying the silicon source and supplying a reaction gas, A time duration of the supplying the silicon source in the preliminary step is longer than a time duration of the supplying the silicon gas in the process cycle in the main step.
Abstract:
A variable resistance memory device may include a memory unit including a first electrode disposed on a substrate, a variable resistance pattern disposed on the first electrode and a second electrode disposed on the variable resistance pattern, a selection pattern disposed on the memory unit, and a capping structure covering a sidewall of the selection pattern. The capping structure may include a first capping pattern and a second capping pattern sequentially stacked on at least one sidewall of the selection pattern. The first capping pattern may be silicon pattern, and the second capping pattern may include a nitride.
Abstract:
Methods include sequentially forming a first mold film, a first support film, a second mold film, and a second support film on a substrate, forming a contact hole through the second support film, the second mold film, the first support film and the first mold film, forming an electrode in the contact hole, and removing portions of the second support film, the second mold film and the first mold film to leave a portion of the first support film as a first support pattern surrounding the electrode and to leave a portion of the second support film as a second support pattern surrounding the electrode.
Abstract:
A variable resistanvce memory device may include a plurality of first conductive lines extending in a first direction, a plurality of second conductive lines extending in a second direction, a plurality of memory cells, each memory cell at a respective intersection, with respect to a top down view, between a corresponding one of the first conductive lines and a corresponding one of the second conductive lines, each memory cell comprising a variable resistance structure and a switching element sandwiched between a top electrode and a bottom electrode, and a first dielectric layer filling a space between the switching elements of the memory cells. A top surface of the first dielectric layer is disposed between bottom and top surfaces of the top electrodes of the memory cells.
Abstract:
Methods include sequentially forming a first mold film, a first support film, a second mold film, and a second support film on a substrate, forming a contact hole through the second support film, the second mold film, the first support film and the first mold film, forming an electrode in the contact hole, and removing portions of the second support film, the second mold film and the first mold film to leave a portion of the first support film as a first support pattern surrounding the electrode and to leave a portion of the second support film as a second support pattern surrounding the electrode.
Abstract:
Disclosed are a three-dimensional semiconductor memory device and an electronic system including the same. A semiconductor device includes a substrate, a cell array structure including a plurality of electrodes stacked on the substrate, a vertical channel structure that penetrates the cell array structure and is connected to the substrate, a conductive pad in an upper portion of the vertical channel structure, an interlayer insulating layer on the cell array structure, a bit line on the cell array structure, a bit line contact electrically connecting the bit line to the conductive pad, and a first stress release layer between the cell array structure and the bit line on a top surface of the interlayer insulating layer. The first stress release layer includes organosilicon polymer, and a carbon concentration of the first stress release layer is higher than that of the interlayer insulating layer.
Abstract:
A method of manufacturing a variable resistance memory device may include: forming a memory cell including a variable resistance pattern on a substrate; performing a first process to deposit a first protective layer covering the memory cell; and performing a second process to deposit a second protective layer on the first protective layer. The first process and the second process may use the same source material and the same nitrogen reaction material, and a nitrogen content in the first protective layer may be less than a nitrogen content in the second protective layer.
Abstract:
Methods for fabricating a semiconductor device are provided including sequentially forming a first hard mask layer, a second hard mask layer and a photoresist layer on a target layer, patterning the photoresist layer to form a photoresist pattern, sequentially patterning the second hard mask layer and the first hard mask layer using the photoresist pattern as an etching mask to form a first hard mask pattern and a second hard mask pattern on the first hard mask pattern, and etching the target layer using the first hard mask pattern and the second hard mask pattern as an etching mask, wherein the second hard mask layer includes impurity-doped amorphous silicon.