Abstract:
A method including forming a pseudo-gel of a semi-crystalline polymer material and a solvent. The pseudo-gel is shaped into a first form and stretched. A portion of the solvent is removed to create a second form. The second form is stretched into a microstructure including nodes interconnected by fibrils. A method including forming a first form of a pseudo-gel including an ultra-high molecular weight polyethylene material and a solvent; stretching the first form; removing the solvent to form a second form; stretching the second form into a microstructure including nodes interconnected by fibrils; and annealing the stretched second form. An apparatus including a body portion formed of a dimension suitable for a medical device application and including a polyolefin polymer including a node and a fibril microstructure. An apparatus including a body portion including an ultra-high molecular weight polyolefin material including a node and a fibril microstructure.
Abstract:
A method including forming a semi-crystalline polymer material into a lamella; and stretching the lamella into a polymer including a node of folded lamella and a fibril orientation. A method including extruding a pseudo-gel including an ultrahigh molecular weight polyethylene material into a lamella; stretching the lamella into a polymer including a node of folded lamella and a fibril orientation; and annealing the polymer at a temperature sufficient to define the node and fibril orientation. An apparatus including a body portion formed of a dimension suitable for a medical device application and including a semi-crystalline polymer arrayed in a node of folded lamella and a fibril orientation. An apparatus including a body portion including an ultra-high molecular polyethylene material arrayed in a node of folded lamella and a fibril orientation.
Abstract:
Paste compositions, methods of making a paste composition, photovoltaic cells, and methods of making a photovoltaic cell contact are disclosed. The paste composition can include a conductive metal component such as aluminum, phosphate glass, phosphorus compounds such as alky! phosphate, and a vehicle. The contact can be formed on a passivation layer on a silicon wafer by applying the paste on the passivation layer and firing the paste. During firing, the metal component can fire through the passivation layer, thereby electrically contacting the silicon substrate.
Abstract:
Durable hermetic seals between two inorganic substrates are produced using a high-intensity electromagnetic energy source, such as laser, to heat and seal enamel layers with controlled absorption of high-intensity energy source. Durable hermetic seals incorporating electrical feedthroughs are also produced.
Abstract:
Embodiments include an infusion-occlusion system having a delivery catheter, a guide catheter adapted to receive the delivery catheter, and a guidewire with an occlusion device adapted to be received within the guide catheter. The guide catheter of the catheter kit may be provided with an occlusion device at the distal end of the guide catheter. The delivery catheter may have an accessory lumen, coaxial or co-linear lumen, a supporting mandrel, or an occlusion device at its distal end. Moreover, according to some embodiments, occlusion devices may be a single material or a composite balloon having an inner liner and an outer layer of different materials, a high compliance low pressure balloon, or a filter device that restricts particles from passing through but does not restrict fluid, such as blood. An inflation device with a large volume and low volume syringe can be used to inflate the balloon.
Abstract:
Hot-melt sealing glass compositions that include one or more glass frits dispersed in a polymeric binder system. The polymeric binder system is a solid at room temperature, but melts at a temperature of from about 35° C. to about 90° C., thereby forming a flowable liquid dispersion that can be applied to a substrate (e.g., a cap wafer and/or a device wafer of a MEMS device) by screen printing. Hot-melt sealing glass compositions according to the invention rapidly re-solidify and adhere to the substrate after being deposited by screen printing. Thus, they do not tend to spread out as much as conventional solvent-based glass frit bonding pastes after screen printing. And, because hot-melt sealing glass compositions according to the invention are not solvent-based systems, they do not need to be force dried after deposition.
Abstract:
Solder can be used to wet and bind glass substrates together to ensure a hermetic seal that superior (less penetrable) than conventional polymeric (thermoplastic or thermoplastic elastomer) seals in electric and electronic applications.
Abstract:
Methods, devices, kits and compositions to treat a myocardial infarction. In one embodiment, the method includes the prevention of remodeling of the infarct zone of the ventricle. In other embodiments, the method includes the introduction of structurally reinforcing agents. In other embodiments, agents are introduced into a ventricle to increase compliance of the ventricle. In an alternative embodiment, the prevention of remodeling includes the prevention of thinning of the ventricular infarct zone. In another embodiment, the prevention of remodeling and thinning of the infarct zone involves the cross-linking of collagen and prevention of collagen slipping. In other embodiments, the structurally reinforcing agent may be accompanied by other therapeutic agents. These agents may include but are not limited to pro-fibroblastic and angiogenic agents.
Abstract:
Formulations and methods of making solar cell contacts and cells therewith are disclosed. In general, the invention provides a solar cell comprising a contact made from a mixture wherein, prior to firing, the mixture comprises at least one aluminum source, at least one source of a metal including one or more of boron, titanium, nickel, tin, gallium zinc, indium, and copper, and about 0.1 to about 10 wt % of a glass component. Within the mixture, the overall content of aluminum is about 50 wt % to about 85 wt % of the mixture, and the overall combined content of boron, nickel, tin, silver, gallium, zinc, indium, copper, is about 0.05 to about 40 wt % of the mixture.