Abstract:
A method of filling a recess according to one embodiment of the present disclosure comprises heating an amorphous semiconductor film without crystallizing the amorphous semiconductor film by radiating laser light to the amorphous semiconductor film embedded in the recess.
Abstract:
In a method for removing a boron film formed on a substrate by CVD, heat treatment is performed on a part or all boron film in an oxidizing atmosphere and oxidizing a heat-treated portion. Then, an oxidized portion of the boron film is removed by water or aqueous solution containing electrolyte ions.
Abstract:
There is provided a boron-based film forming method for forming a boron-based film mainly containing boron on a substrate. The method includes steps of loading a substrate into a chamber of a film forming apparatus for forming the boron-based film by plasma CVD using capacitively-coupled plasma, supplying a processing gas containing a boron-containing gas into the chamber, applying a high frequency power for generating the capacitively-coupled plasma and forming the boron-based film on the substrate by generating a plasma of the processing gas by the high frequency power. A film stress of the boron-based film is adjusted by the high frequency power in the applying step.
Abstract:
An electromagnetic heating device for heating a target object by irradiating electromagnetic wave includes a chamber configured to accommodate the target object, an electromagnetic wave irradiation unit configured to irradiate the electromagnetic wave to the target object in the chamber, wherein an oscillation frequency of the irradiated electromagnetic wave is variable, and a control unit configured to control heating by the electromagnetic wave. The control unit draws, on a complex plane, complex relative permittivity characteristics indicating change in a complex relative permittivity of the target object when a frequency of the irradiated electromagnetic wave varies, also draws a non-reflection curve on the complex plane, determines a frequency of the electromagnetic wave and a thickness of the target object based on a value derived from an intersection point between the complex relative permittivity characteristics and the non-reflection curve, and performs electromagnetic heating based on the determined frequency and thickness.
Abstract:
There is provided a method of forming a boron film on a substrate on which a semiconductor device is formed, by plasmarizing a reaction gas containing a boron-containing gas under a process atmosphere regulated to a pressure which falls within a range of 0.67 to 33.3 Pa (5 to 250 mTorr). The boron film is formed on a substrate on which a semiconductor device is formed, by plasmarizing a reaction gas containing a boron-containing gas under a process atmosphere regulated to a pressure which falls within a range of 0.67 to 33.3 Pa (5 to 250 mTorr).
Abstract:
A method of forming a crystalline silicon film includes forming a first amorphous silicon film on a substrate, forming a crystal nucleation film in which crystal nuclei of silicon are formed by performing a first annealing on the substrate having the first amorphous silicon film formed thereon, performing etching with an etching gas, forming a second amorphous silicon film on the crystal nuclei remaining after the etching, and forming a crystalline silicon film by performing a second annealing on the substrate after the forming of the second amorphous silicon film to grow the crystal nuclei.
Abstract:
A method of forming a boron-based film mainly containing boron on a substrate includes forming, on the substrate, an adhesion layer containing an element contained in a surface of the substrate and nitrogen, and subsequently, forming the boron-based film on the adhesion layer.
Abstract:
A method of forming a boron-based film includes forming the boron-based film mainly containing boron on a substrate by plasma CVD using plasma of a processing gas including a boron-containing gas; and controlling film stress of the formed boron-based film by adjusting a process parameter.