摘要:
A field effect transistor and a method of manufacturing thereof are disclosed that is not reduced in the characteristic of withstanding voltage between multilayer interconnection layers even when scaled to a higher integration. This field effect transistor includes side walls 21a formed on both sides of a bit line 15 so that the bottom side end contacts the upper surface of side walls 20a of gate electrodes 4b and 4c. The thickness of an insulating film interposed between gate electrodes 4b and 4c and a base portion 11a forming a low electrode 11 of a capacitor is not reduced. The characteristic of withstanding voltage is not deteriorated between multilayer interconnection layers even when scaled to higher integration.
摘要:
A field effect transistor and a method of manufacturing thereof are disclosed that is not reduced in the characteristic of withstanding voltage between multilayer interconnection layers even when scaled to a higher integration. This field effect transistor includes side walls 21a formed on both sides of a bit line 15 so that the bottom side end contacts the upper surface of side walls 20a of gate electrodes 4b and 4c. The thickness of an insulating film interposed between gate electrodes 4b and 4c and a base portion 11a forming a low electrode 11 of a capacitor is not reduced. The characteristic of withstanding voltage is not deteriorated between multilayer interconnection layers even when scaled to higher integration.
摘要:
A dynamic random access memory (DRAM) is disclosed that can effectively prevent the formation of steps in the boundary region of a memory cell array 101 and a peripheral circuit 102, even in high integrated devices. This DRAM includes a double peripheral wall 20 of peripheral walls 20a and 20b at the boundary region of the memory cell array 101 and the peripheral circuit 102 of a P type silicon substrate 1, extending vertically upwards from the P type silicon substrate 1. The upper surfaces of the devices formed on the memory cell array and the peripheral circuit 102 in forming devices on the memory cell array 101 and the peripheral circuit 102 are substantially planarized, by virture of the double peripheral wall 20, to effectively prevent steps from being generated in the boundary region of the memory cell array 101 and the peripheral circuit 102, even in high integrated devices.
摘要:
A dynamic random access memory (DRAM) is disclosed that can effectively prevent the formation of steps in the boundary region of a memory cell array 101 and a peripheral circuit 102, even in high integrated devices. This DRAM includes a double peripheral wall 20 of peripheral walls 20a and 20b at the boundary region of the memory cell array 101 and the peripheral circuit 102 of a P type silicon substrate 1, extending vertically upwards from the P type silicon substrate 1. The upper surfaces of the devices formed on the memory cell array and the peripheral circuit 102 in forming devices on the memory cell array 101 and the peripheral circuit 102 are substantially planarized, by virture of the double peripheral wall 20, to effectively prevent steps from being generated in the boundary region of the memory cell array 101 and the peripheral circuit 102, even in high integrated devices.
摘要:
Disclosed is a semiconductor memory device in which defects in crystal in a junction region between a capacitor and a source/drain region, and a short channel effect of a transistor can be effectively reduced. The semiconductor memory device includes, on the side of a gate electrode at which the capacitor is connected, a sidewall formed to have a width larger than that of a sidewall on the side of a bit line, and a source/drain region to which the capacitor is connected and which is formed to have a diffusion depth larger than that of the opposite source/drain region. Therefore, the source/drain region effectively prevents defects in crystal from being produced in the junction region between the capacitor and the source/drain region connected to the capacitor and the sidewall effectively reduces the short channel effect.
摘要:
Disclosed is a semiconductor memory device in which defects in crystal in a junction region between a capacitor and a source/drain region, and a short channel effect of a transistor can be effectively reduced. The semiconductor memory device includes, on the side of a gate electrode at which the capacitor is connected, a sidewall formed to have a width larger than that of a sidewall on the side of a bit line, and a source/drain region to which the capacitor is connected and which is formed to have a diffusion depth larger than that of the opposite source/drain region. Therefore, the source/drain region effectively prevents defects in crystal from being produced in the junction region between the capacitor and the source/drain region connected to the capacitor and the sidewall effectively reduces the short channel effect.
摘要:
Disclosed is a semiconductor memory device in which defects in crystal in a junction region between a capacitor and a source/drain region, and a short channel effect of a transistor can be effectively reduced. The semiconductor memory device includes, on the side of a gate electrode at which the capacitor is connected, a sidewall formed to have a width larger than that of a sidewall on the side of a bit line, and a source/drain region to which the capacitor is connected and which is formed to have a diffusion depth larger than that of the opposite source/drain region. Therefore, the source/drain region effectively prevents defects in crystal from being produced in the junction region between the capacitor and the source/drain region connected to the capacitor and the sidewall effectively reduces the short channel effect.
摘要:
A semiconductor device having an increased integration density. The semiconductor device includes a memory cell array, and a peripheral circuit region formed over the memory cell array and to be in electrical connection to the memory cell array for controlling the input/output of the data signals. A large part of a semiconductor chip area can therefore be used for the memory cell array, thereby increasing the integration density of the semiconductor device.
摘要:
A DRAM is formed on a silicon substrate having a retrograde well and a diffusion-type well. The retrograde well has an impurity concentration profile which is set in steps by a plurality of ion-implantations. The diffusion-type well has an impurity concentration profile which changes monotonously by a thermal diffusion. A memory cell array is formed in the retrograde well region. A peripheral circuit is formed in the diffusion-type well region. The retrograde well enhances integration of devices included in the memory cell array. The diffusion-type well enhances the characteristic of insulating isolation between devices.
摘要:
A semiconductor memory device in accordance with the present invention includes a plurality of n well regions and p well regions in a p type silicon substrate. One of the p well regions is connected to an external power supply. Peripheries of the p well region having a memory cell array formed therein are surrounded by an n well region having a potential held at a positive potential. The n well region held at the positive potential prevents electrons introduced into the substrate due to undershoot from entering into a p well region through the p well region connected to the external power supply.