Abstract:
A system, method and computer program product for producing spike-dependent plasticity in an artificial synapse is disclosed. According to one embodiment, a method for producing spike-dependent plasticity in an artificial neuron comprises generating a pre-synaptic spiking event in a first neuron when a total integrated input to the first neuron exceeds a first predetermined threshold. A post-synaptic spiking event is generated in a second neuron when a total integrated input to the second neuron exceeds a second predetermined threshold. After the pre-synaptic spiking event, a first pulse is applied to a pre-synaptic node of a synapse having a phase change memory element. After the post-synaptic spiking event, a second varying pulse is applied to a post-synaptic node of the synapse, wherein current through the synapse is a function of the state of the second varying pulse at the time of the first pulse.
Abstract:
A reconfigurable neural network circuit is provided. The reconfigurable neural network circuit comprises an electronic synapse array including multiple synapses interconnecting a plurality of digital electronic neurons. Each neuron comprises an integrator that integrates input spikes and generates a signal when the integrated inputs exceed a threshold. The circuit further comprises a control module for reconfiguring the synapse array. The control module comprises a global final state machine that controls timing for operation of the circuit, and a priority encoder that allows spiking neurons to sequentially access the synapse array.
Abstract:
A method for modifying the refractive index of an optical polymeric material. The method comprises continuously irradiating predetermined regions of an optical, polymeric material with femtosecond laser pulses to form a gradient index refractive structure within the material. An optical device includes an optical, polymeric lens material having an anterior surface and posterior surface and an optical axis intersecting the surfaces and at least one laser-modified, GRIN layer disposed between the anterior surface and the posterior surface and arranged along a first axis 45° to 90° to the optical axis, and further characterized by a variation in index of refraction across at least one of at least a portion of the adjacent segments and along each segment.
Abstract:
A neuromorphic system includes a plurality of synapse blocks electrically connected to a plurality of neuron circuit blocks. The plurality of synapse blocks includes a plurality of neuromorphic circuits. Each neuromorphic circuit includes a field effect transistor in a diode configuration electrically connected to variable resistance material, where the variable resistance material provides a programmable resistance value. Each neuromorphic circuit also includes a first junction electrically connected to the variable resistance material and an output of one or more of the neuron circuit blocks, and a second junction electrically connected to the field effect transistor and an input of one or more of the neuron circuit blocks.
Abstract:
Embodiments of the invention relate to producing spike-timing dependent plasticity using electronic neurons interconnected in a crossbar array network. The crossbar array network comprises a plurality of crossbar arrays. Each crossbar array comprises a plurality of axons and a plurality of dendrites such that the axons and dendrites are transverse to one another, and multiple synapse devices, wherein each synapse device is at a cross-point junction of the crossbar array coupled between a dendrite and an axon. The crossbar arrays are spatially in a staggered pattern providing a staggered crossbar layout of the synapse devices.
Abstract:
Embodiments of the invention relate to a neuromorphic network for producing spike-timing dependent plasticity. The neuromorphic network includes a plurality of electronic neurons and an interconnect circuit coupled for interconnecting the plurality of electronic neurons. The interconnect circuit includes plural synaptic devices for interconnecting the electronic neurons via axon paths, dendrite paths and membrane paths. Each synaptic device includes a variable state resistor and a transistor device with a gate terminal, a source terminal and a drain terminal, wherein the drain terminal is connected in series with a first terminal of the variable state resistor. The source terminal of the transistor device is connected to an axon path, the gate terminal of the transistor device is connected to a membrane path and a second terminal of the variable state resistor is connected to a dendrite path, such that each synaptic device is coupled between a first axon path and a first dendrite path, and between a first membrane path and said first dendrite path.
Abstract:
A system and method for occluding an aneurysm formed in a dilatation area of a body vessel are disclosed. The system comprises a wire guide, a core wire, and an occlusion device. The wire guide comprises a proximal end and a distal end, and has a passageway that extends from the proximal end to the distal end. The core wire comprises a distal end and a proximal end, and is disposed through the passageway so that the proximal end of the core wire proximally extends beyond the proximal end of the wire guide. The occlusion device comprises a distal end and a proximal end, and has a deployed state and an undeployed state. The occlusion device has a pre-set spiraled coil shape when in the deployed state in the vessel. The occlusion device is disposed distally from the core wire in the passageway.
Abstract:
An active memory element is provided. A bipolar memory two-terminal element includes polarity-dependent switching. A probability of switching of the bi-polar memory element between a first state and a second state decays exponentially based on time delay and a difference between received signals at the two terminals and a switching threshold magnitude.
Abstract:
This disclosure relates to methods of making a cathode for a lithium batter. The methods include: (a) treating a cathode current collector with flame or corona; (b) coating a slurry containing iron disulfide, a first solvent, and a binder onto the cathode current collector obtained from step (a) to form a coated cathode current collector, in which the slurry contains about 73-75% by weight solids and the binder contains a polymer selected from the group consisting of linear di- and tri-block copolymers, linear tri-block copolymers cross-linked with melamine resin, ethylene-propylene copolymers, ethylene-propylene-diene terpolymers, tri-block fluorinated thermoplastics, hydrogenated nitrile rubbers, fluoro-ethylene-vinyl ether copolymers, thermoplastic polyurethanes, thermoplastic olefins, and polyvinylidene fluoride homopolymers; and (c) drying the coated cathode current collector obtained from step (b) to provide a cathode, in which the cathode contains no more than 0.5% by volume of the first solvent and is capable of being bent to 180°. This disclosure also relates to methods of making a lithium battery.
Abstract:
A contact module is provided for an electrical connector. The contact module includes a housing having a mating edge, a mounting edge, and a side. An electrical lead is held by the housing. The electrical lead extends from a mating contact to a mounting contact. The mating contact extends outwardly from the mating edge of the housing. The mounting contact extends outwardly from the mounting edge of the housing. An inner ground shield is mounted on the housing. The inner ground shield includes a housing side segment that extends over at least a portion of the side of the housing between the mating and mounting edges thereof. An outer ground shield is mounted on the housing. The outer ground shield extends over at least a portion of the housing side segment of the inner ground shield.