Abstract:
Methods and systems for determining the concentration of one or more analytes from a sample such as blood or plasma are described. The systems described herein can be configured to withdraw a certain volume of sample from a source of bodily fluid, direct a first portion of the withdrawn sample to an analyte monitoring system and return a second portion of the sample to the patient. The analyte monitoring system can include an automated blood withdrawal system that is configured to withdraw blood from the patient's vasculature at low pressure and/or withdrawal rates so as to reduce or prevent contamination of the withdrawn fluid from the infusion fluids.
Abstract:
A fluid handling module that is removably engageable with a bodily fluid analyzer is provided. The module may comprise a fluid handling element, and a fluid component separator that is accessible via the fluid handling element and configured to separate at least one component of a bodily fluid transported to the fluid component separator. The fluid handling element may have at least one control element interface.
Abstract:
A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Abstract:
A fluid handling module that is removably engageable with a bodily fluid analyzer is provided. The module may comprise a fluid handling element, and a fluid component separator that is accessible via the fluid handling element and configured to separate at least one component of a bodily fluid transported to the fluid component separator. The fluid handling element may have at least one control element interface.
Abstract:
The volume of fluid removed from a patient during ultrafiltration is controlled automatically on the basis of central venous pressure (CVP) measurements. In one embodiment, a central venous catheter (CVC) is used for accessing blood during dialysis. A sensor located at the tip of the catheter or inside the dialysis machine is used to periodically measure CVP. CVP feedback data helps prevent the excessive removal of fluids from the patient.
Abstract:
In some embodiments, an apparatus analyzes the composition of bodily fluid. The apparatus comprises a fluid handling network including a patient end configured to maintain fluid communication with a bodily fluid in a patient and at least one pump intermittently operable to draw a sample of bodily fluid from the patient. The apparatus further comprises a fluid analyzer positioned to analyze at least a portion of the sample and measure the presence of two or more analytes. Also disclosed is a method for analyzing the composition of a bodily fluid in a patient. The method comprises drawing a sample of the bodily fluid of the patient through a fluid handling network configured to maintain fluid communication with a bodily fluid in a patient. The method further comprises analyzing the at least a portion of the sample in a fluid analyzer to estimate the concentration of two or more analytes in the sample.
Abstract:
A reagentless whole-blood analyte detection system that is capable of being deployed near a patient has a source capable of emitting a beam of radiation that includes a spectral band. The whole-blood system also has a detector in an optical path of the beam. The whole-blood system also has a housing that is configured to house the source and the detector. The whole-blood system also has a sample element that is situated in the optical path of the beam. The sample element has a sample cell and a sample cell wall that does not eliminate transmittance of the beam of radiation in the spectral band.
Abstract:
An apparatus for analyzing the composition of bodily fluid. The apparatus comprises a fluid handling network including a patient end configured to maintain fluid communication with a bodily fluid in a patient and at least one pump intermittently operable to draw a sample of bodily fluid from the patient. The apparatus further comprises a fluid analyzer positioned to analyze at least a portion of the sample and measure the presence of two or more analytes. Also disclosed is a method for analyzing the composition of a bodily fluid in a patient. The method comprises drawing a sample of the bodily fluid of the patient through a fluid handling network configured to maintain fluid communication with a bodily fluid in a patient. The method further comprises analyzing the at least a portion of the sample in a fluid analyzer to estimate the concentration of two or more analytes in the sample.
Abstract:
An embodiment of a system for analyzing a body fluid of a patient comprises a fluid transport network having a patient end configured to provide fluid communication with the body fluid in the patient and a fluid delivery point spaced from the patient end. A pump system is coupled to the fluid transport network. The pump system has an infusion mode in which the pump system is operable to pump an infusion fluid toward the patient end of the fluid transport network and a draw mode in which the pump system is operable to draw the body fluid from the patient into the fluid transport network through the patient end. At least one electrochemical test element is located near the fluid delivery point of the fluid transport network. The electrochemical test element is positioned to receive a portion of the body fluid delivered to the delivery point by the fluid transport network. An analyte detection system is configured to receive the test element and to measure at least one analyte in the portion of the body fluid.
Abstract:
Volumetric accuracy in hemodialysis systems is provided by swapping pumps between the replacement fluid side and the output side for a hemofiltration system and between the return fluid side and the sorbent side for a closed-loop, sorbent-based system, such that same quantity of fluid is pumped at each point after the end of an even number of pump swaps. A method for calculating the time interval between swaps is provided based on an allowable difference in amount pumped in the two functions at any given time. A mechanism is provided for compensating for the differences in head pressure presented to the pumps for fluid coming from the replacement-fluid containers or the reservoir and that coming back from the patient through the dialyzer. The pump-swapping system provides an accurate means that can be inexpensively implemented, including using a disposable device.