Abstract:
An image sensor includes a first type semiconductor layer, a second type semiconductor layer and a first type well. The first type semiconductor layer is formed on a semiconductor substrate and includes a plurality of pixels which receive external light and convert optical charges into an electrical signal. The second type semiconductor layer is supplied with a drain voltage to have a potential different from that of the first semiconductor layer, and the first type well controls a power source voltage (VDD) using the drain voltage.
Abstract:
An image pickup device includes an active pixel sensor (APS), a row driver, and a leakage current breaker. The active pixel sensor includes an array of a plurality of pixels. The row driver selects at least one pixel to be activated to output signals. The leakage current breaker decreases the leakage current through the unselected pixels by applying a leakage current breaker voltage at the bit lines of the APS array.
Abstract:
Example embodiments relate to a semiconductor device and a method of manufacturing the same. A semiconductor device according to example embodiments may have reduced disturbances during reading operations and a reduced short channel effect. The semiconductor device may include a semiconductor substrate having a body and a pair of fins protruding from the body. Inner spacer insulating layers may be formed on an upper portion of an inner sidewall of the pair of fins so as to reduce the entrance to the region between the pair of fins. A gate electrode may cover a portion of the external sidewalls of the pair of fins and may extend across the inner spacer insulating layers so as to define a void between the pair of fins. Gate insulating layers may be interposed between the gate electrode and the pair of fins.
Abstract:
A non-volatile memory device may include a substrate having a field region and an active region including a rounded upper edge portion and a flat upper central portion, an effective tunnel oxide layer on the flat upper central portion of the active region, a split floating gate electrode on the effective tunnel oxide layer, the floating gate electrode having a width greater than a width of the effective tunnel oxide layer, a dielectric layer pattern on the floating gate electrode, the dielectric layer pattern including metal oxide, and a control gate electrode on the dielectric layer pattern.
Abstract:
An image sensor applying a power voltage to a backside of a semiconductor substrate includes a first type semiconductor substrate, a first type semiconductor layer formed on the first type semiconductor substrate, a second type semiconductor layer formed on the first type semiconductor layer, and a power voltage receiver formed on a backside of the first type semiconductor substrate opposite the first type semiconductor layer with respect to the first type semiconductor substrate, wherein the power voltage receiver receives a power voltage from outside and applies the power voltage to the first type semiconductor substrate.
Abstract:
A method of manufacturing a package substrate includes forming a first copper plated layer on a base substrate having through holes and inner surfaces of the through hole, coating a first resist over the first copper plated layer, partially removing the first resist, forming a second copper plated layer on the first copper plated layer, stripping the first resist, coating a second resist over the resultant structure, and removing the second resist from regions where wire bonding pads and solder ball pads are to be formed, removing exposed portions of the first copper plated layer, forming the wire bonding pads and the solder ball pads, removing the second resist, removing exposed portions of the first copper plated layer, and coating a solder resist over all surfaces of the resultant structure, and removing portions of the solder resist respectively covering the wire bonding pads and the solder ball pads.
Abstract:
An RF modulator includes a C/L delay compensation function of compensating for a delay of a luminance signal with respect to a chrominance signal occurring during demodulating a video signal in a TV set. The RF modulator includes a C/L delay compensation unit delaying a luminance signal by 170 nsec and combining the delayed luminance signal with a chrominance signal to output a composite image signal having a C/l delay of −170 nsec and a frequency modulation unit modulating the video signal received from the C/L delay compensation unit into a high frequency signal of a predetermined broadcasting channel in a single module or package. The RF modulator outputs a video signal having the luminance signal delayed by 170 nsec with respect to the chrominance signal and complies with a C/L delay standard without adding any additional C/L delay compensation unit to the RF modulator.
Abstract:
The present invention relates to a pressure pulse wave transducer for sensing change of the blood pressure in vivo and for converting it into an electrical signal to detect the arterial pressure pulse wave.
Abstract:
A method for manufacturing a capacitor for a semiconductor device, which includes the steps of forming a first conductive layer on a semiconductor substrate, forming a first pattern by patterning the first conductive layer, sequentially forming a second conductive layer and a first material layer on the entire surface of the resultant structure, forming a spacer on the sidewall of the second conductive layer by anisotropic-etching the first material layer, forming a second pattern by partially etching the second conductive layer and the first pattern, using the spacer as an etching mask, forming a third conductive layer on the entire surface of the resultant structure, forming a cylindrical storage electrode by anisotropic-etching the third conductive layer, and removing the spacer.
Abstract:
In a method of forming a wiring structure, a lower structure is formed on a substrate. An insulating interlayer is formed on the lower structure. The insulating interlayer is partially removed to form at least one via hole and a dummy via hole. An upper portion of the insulating interlayer is partially removed to form a trench connecting the via hole and the dummy via hole. A first metal layer filling the via hole and the dummy via hole is formed. A second metal layer filling the trench is formed on the first metal layer.