Abstract:
Embodiments of methods and apparatus for determining and/or quantizing a beamforming matrix are disclosed. In some embodiments, the determining and/or quantizing of the beamforming matrix may include the use of a base codebook and a differential codebook. Additional variants and embodiments are also disclosed.
Abstract:
Embodiments of the present invention provide an Access Point (AP) to transmit and receive RF signals in a wireless local area network (WLAN), comprising, a processor to process the RF signals, a scheduler to schedule data packets that may have differing lengths for transmission to selected mobile stations, a Radio Frequency (RF) transceiver to receive and transmit the RF signals using space-time channels, and a code rate adjuster to adjust a code rate of Forward Error-Correction (FEC) codes in the packets to fill the space-time channels.
Abstract:
Embodiments of user equipment and methods for improved uplink transmission power management and scheduling, are generally described herein. For example, in an aspect, a method of uplink power management is presented, the method includes determining whether a total desired transmission power exceeds a total configured maximum output power for a subframe. When the total desired transmission power exceeds the total configured maximum output power, the method includes allocating a minimum proactive power limitation to each serving cell, assigning a remaining power to one or more channels based on priority, and computing a total power assignment based on the allocating and the assigning.
Abstract:
Embodiments of an enhanced Node B (eNB) and method for precoding with reduced quantization error are generally described herein. In some embodiments, first and second precoding-matrix indicator (PMI) reports may be received on an uplink channel and a single subband precoder matrix may be interpolated from precoding matrices indicated by both the PMI reports. Symbols for multiple-input multiple output (MIMO) beamforming may be precoded using the interpolated precoder matrix computed for single subband for a multiple user (MU)-MIMO downlink orthogonal frequency division multiple access (OFDMA) transmission. In some embodiments, each of the first and second PMI reports includes a PMI associated with a same subband that jointly describes a recommended precoder.
Abstract:
Technology to adaptively sectorize a spatial region for parallel multi-user transmissions is disclosed. In an example, a node (e.g., evolved Node B (eNB)) can include computer circuitry configured to: Generate a set of precoding matrices for a set of beam cones in the spatial region; and generate a beam cone for multi-user beamforming transmissions using system information for the beam cone. A precoding matrix in the set of precoding matrices can be used for each beam cone, and each beam cone can cover a beam cone spatial region that differs from another beam cone spatial region of another beam cone in the spatial region. Each beam cone can include system information that differs from the system information of the other beam cones in the spatial region.
Abstract:
In embodiments, an evolved Node B (eNB) of a wireless communication network may configure an enhanced physical downlink control channel (EPDCCH) physical resource block (PRB) set for a user equipment (UE). The EPDCCH-PRB set may include a plurality of PRB-pairs. The EPDCCH-PRB set may further include a plurality of enhanced resource element groups (EREGs) organized into localized enhanced control channel elements (ECCEs) having EREGs of the same PRB-pair and distributed ECCEs having EREGs of different PRB-pairs. In some embodiments, the eNB may determine a set of distributed EPDCCH candidates for the UE from the EPDCCH-PRB set, wherein the individual distributed EPDCCH candidates include one or more of the distributed ECCEs, and wherein the set of distributed EPDCCH candidates includes at least one EREG from each of the plurality of localized ECCEs. Other embodiments may be described and claimed.
Abstract:
A system and a method is disclosed for selecting at least one vertical precoding vector of a three-dimensional Multiple Input Multiple Output (3D-MIMO) configuration based on Channel State Information-Reference Signal (CSI-RS) information that is feedback from a wireless terminal device to an evolved Node B (eNB). The 3D-MIMO CSI-RS process is configured for a plurality of CSI-RS ports in which the plurality of CSI-RS ports that are grouped into a plurality of CSI-RS port groups and in which corresponds to the 3D arrangement of antennas. CSI configuration information for the different CSI-RS port groups can be a time-domain-based CSI-RS process, a frequency-domain-based CSI-RS process, a code-domain-based CSI-RS process, or a combination thereof. CSI-RS information is measured for each CSI-RS group and feedback for selection of the at least one vertical precoding vector.
Abstract:
Briefly, in accordance with one or more embodiments, a base transceiver station having a first set of antennas and a second set of antennas geographically separated from the first set of antennas transmits a reference signal to a first device, and receives feedback from the first device. The feedback represents information that can be used to construct a weight adjustment vector. The base transceiver station selects a precoding vector from a codebook based at least in part on the feedback received from the first device, calculates the weight adjustment vector based at least in part on the feedback, and applies the weight adjustment vector to the selected precoding vector to provide an adjusted precoding vector. The base transceiver station then may transmit data to the first device using the adjusted precoding vector.
Abstract:
Embodiments of a mobile device transmitter and methods for transmitting signals in different signal dimensions are generally disclosed herein. The mobile device transmitter comprises a mapper to map a block of two or more input modulation symbols to different signal dimensions comprising two or more spatial dimensions, and linear transform circuitry to perform a linear transform on the block of mapped input modulation symbols to generate a block of precoded complex-valued output symbols such that each output symbol carries some information of more than one input modulation symbol. The mobile device also comprises transmitter circuitry to generate time-domain signals from the blocks of precoded complex-valued output symbols for each of the spatial dimensions for transmission using the two or more antennas. The precoded complex-valued output symbols are mapped to different signal dimensions comprising at least different frequency dimensions prior to transmission.