摘要:
A method and structure is disclosed for a transistor having a gate, a channel region below the gate, a source region on one side of the channel region, a drain region on an opposite side of the channel region from the source region, a shallow trench isolation (STI) region in the substrate between the drain region and the channel region, and a drain extension below the STI region. The drain extension is positioned along a bottom of the STI region and along a portion of sides of the STI. Portions of the drain extension along the bottom of the STI may comprise different dopant implants than the portions of the drain extensions along the sides of the STI. Portions of the drain extensions along sides of the STI extend from the bottom of the STI to a position partially up the sides of the STI. The STI region is below a portion of the gate. The drain extension provides a conductive path between the drain region and the channel region around a lower perimeter of the STI. The drain region is positioned further from the gate than the source region.
摘要:
A device and method are provided for testing the timing of an output signal from a circuit. The output signal can be sent from a circuit contained within a portion of an integrated circuit, and represents a response to a test pattern or stimuli applied to that circuit. The output signal is compared to an expected output signal to determine skew of that signal relative to the clocking of the circuit. Testing the output signal involves placing a characterization path within the functional path of the output signal, between the circuits being tested and an output terminal that can receive a measurement device. By placing the characterization path into the functional path, the output signal sees only a single load gate terminal of, for example, a logic gate. The reduced loading not only positively impacts the normal operation of the output signal, but also beneficially minimizes the possibility of any inaccuracies in the characterization testing.
摘要:
A memory cell that has first and second fully depleted transfer devices each having a body region and first and second diffused electrodes. The cell has a differential storage capacitor having at least one node abutting and in electrical contact with one of the first and second diffused electrodes of each of the transfer devices. The storage capacitor has a primary capacitance and a plurality of inherent capacitances, wherein the primary capacitance has a capaictive value that is at least approximately five times greater than that of the plurality of inherent capacitances.
摘要:
A method of ion implantation is provided. The method comprising: providing a substrate; forming a masking image having a sidewall on the substrate; forming a blocking layer on the substrate and on the masking image; and performing a retrograde ion implant through the blocking layer into the substrate, wherein the blocking layer substantially blocks ions scattered at the sidewall of the masking layer.
摘要:
A method for detecting semiconductor process stress-induced defects. The method comprising: providing a polysilicon-bounded test diode, the diode comprising a diffused first region within an upper portion of a second region of a silicon substrate, the second region of an opposite dopant type from the first region, the first region surrounded by a peripheral dielectric isolation, a peripheral polysilicon gate comprising a polysilicon layer over a dielectric layer and the gate overlapping a peripheral portion of the first region; stressing the diode; and monitoring the stressed diode for spikes in gate current during the stress, determining the frequency distribution of the slope of the forward bias voltage versus the first region current at the pre-selected forward bias voltage and monitoring, after stress, the diode for soft breakdown. A DRAM cell may be substituted for the diode. The use of the diode as an antifuse is also disclosed.
摘要:
A method of ion implantation is provided. The method comprising: providing a substrate; forming a masking image having a sidewall on the substrate; forming a blocking layer on the substrate and on the masking image; and performing a retrograde ion implant through the blocking layer into the substrate, wherein the blocking layer substantially blocks ions scattered at the sidewall of the masking layer.
摘要:
A method and structure for conductively coupling electrical structures to a semiconductor device located under a silicon on insulator (SOI) layer. The SOI layer is formed on a bulk semiconductor substrate. A trench structure through the SOI layer is formed, wherein an end of the trench structure interfaces with the bulk semiconductor substrate. A semiconductor device is formed in the bulk semiconductor substrate, wherein the semiconductor device includes P+ and N+ diffusions. Conductive plugs are formed through the trench structure such that the conductive plugs are self-aligned with, and in conductive contact with, the diffusions. The semiconductor device in the bulk semiconductor substrate may include an electrostatic discharge device (ESD). The bulk semiconductor substrate, which has a high thermal conductivity, serves as an effective medium for dissipating heat generated by the ESD.
摘要:
A circuit element comprising a semiconductor substrate. A well region of a first conductivity type is formed in a surface of the substrate. A dielectric film is formed on the substrate. A gate conductor of the first conductivity type is formed on the dielectric film over the well region of the substrate. The gate conductor is formed of a polycrystalline silicon film. The gate conductor has an impurity concentration substantially lower than a standard impurity concentration for the gate conductor of an MOS device. A polycrystalline silicon edge spacer is formed on each side of the gate conductor. A first pair of first conductivity type impurity diffusion regions are formed adjacent to the polycrystalline silicon edge spacers. The polycrystalline silicon film and edge spacers lie on a portion of the substrate between the first pair of first conductivity type impurity diffusion regions. The first pair of first conductivity type impurity diffusion regions have an impurity concentration substantially lower than the standard impurity concentration for the gate conductor of an MOS device. The gate conductor and the first pair of first conductivity type impurity diffusion regions may be formed by a single implantation step. Applications include ESD protection, analog applications, peripheral input/output circuitry, decoupling capacitors, and resistor ballasting.
摘要:
The preferred embodiment of the present invention provides a transistor structure and method for fabricating the same that overcomes the disadvantages of the prior art. In particular, the preferred structure and method results in lower leakage and junction capacitance by using raised source and drains which are partially isolated from the substrate by a dielectric layer. The raised source and drains are preferably fabricated from the same material layer used to form the transistor gate. The preferred method for fabricating the transistor uses hybrid resist to accurately pattern the gate material layer into regions for the gate, the source and the drain. The source and drain regions are then connected to the substrate by growing silicon. The preferred method thus results in an improved transistor structure while not requiring excessive fabrication steps.