摘要:
Generally discussed herein are systems and apparatuses that can implement Physical Cell Identity assignments that reduce collision or confusion of small cell identities at User Equipment and techniques for using the same. According to an example apparatus a device can be configured to estimate a location of the small cell eNodeB based on at least one of Global Positioning System (GPS) coordinates of the location of the small cell eNodeB and an RSRP measured at the small cell eNodeB, determine if the location of the small cell eNodeB is within a first region or a second region of a large cell transmission area, wherein the first and second regions do not overlap, and in response to determining which region the small cell eNodeB is deployed in, assign a PCI code from a respective group of available PCI codes to the small cell eNodeB.
摘要:
A system and method for using carrier aggregation and enhanced inter-cell interference coordination in carrier scheduling is disclosed. The method comprises scheduling a communication of control channel information from at least one low power node on a physical downlink control channel (PDCCH) over at least one of a first low power component carrier and a second low power component carrier. A sub-frame having a lowest level of interference caused by a corresponding macro component carrier is identified at each corresponding subframe of the component carriers. The identified sub-frame is selected to transmit the control channel information on the PDCCH from the at least one low power node to a mobile wireless device.
摘要:
In embodiments, apparatuses, methods, and storage media may be described for identifying, by a master evolved NodeB (MeNB), one or more packet data convergence protocol (PDCP) packets that were previously scheduled to be transmitted to a user equipment (UE) by a secondary eNB (SeNB). The PDCP packets that are identified by the MeNB may then be transmitted, or retransmitted, to the UE. Additionally, embodiments may include apparatuses, methods, and storage media for allowing the UE to identify one or more parameters related to a PDCP reordering process to be performed by the UE. Other embodiments may be claimed.
摘要:
Technology for supporting dual connectivity is disclosed. A user equipment (UE) may receive a radio resource control (RRC) reconfiguration message from a macro evolved node B (MeNB). The RRC reconfiguration message may indicate that a secondary cell associated with a secondary eNB (SeNB) is to be added for connection to the UE. The UE may complete an RRC reconfiguration procedure to add the secondary cell. The UE may send a preamble to the SeNB indicating that the UE has completed the RRC reconfiguration procedure. The UE may communicate data with the SeNB after sending the preamble to the SeNB, wherein the UE supports dual connectivity to the MeNB and the SeNB.
摘要:
An embodiment of the present invention provides an apparatus, comprising a transceiver adapted for hierarchical encoding for a Multicast Broadcast Service (MBS) in wireless networks, wherein the hierarchical encoding is provided by superposition coding to provide different levels of protection for data streams.
摘要:
A User Equipment (UE) may be connected to multiple Enhanced Node Bs (eNBs). The multiple connection allows a UE to have an EPS bearer with multiple bearer paths, one routed through each of the eNBs. One eNB may implement a decision module to switch the bearer path to route incoming packets along a selected bearer path in order to achieve objectives such as maintaining Quality of Service (QoS) for the EPS bearer and/or maximizing overall network throughput. The eNB may gather information and metrics influencing these objectives from the other eNB and UE in order to make better bearer path decisions. The split bearer allows the UE to implement reduced protocol layers and reconfigure the protocol layers to match the bearer path selected by the eNB.
摘要:
Technology for communicating security key information from a macro eNB is disclosed. Security key information associated with the macro evolved node B (eNB) may be determined. The security key information may be used to cipher information communicated at the first eNB. A small eNB may be identified at the macro eNB to generate the security key information associated with the macro eNB for ciphering information communicated at the second eNB. The security key information may be communicated, from the macro eNB, to the small eNB for inter-Evolved Universal Terrestrial Radio Access (EUTRA) evolved node B (eNB) carrier aggregation.
摘要:
Briefly, in accordance with one or more embodiments, user equipment receives unicast services from a first carrier of a primary serving cell and determines if Multimedia Broadcast and Multicast services (MBMS) services are available on a second carrier based at least in part on information in a broadcast carrier channel that indicates the second carrier or an identification (ID) of the second carrier. If MBMS services are available on the second carrier, the user equipment at least temporarily switches to the second carrier to receive the MBMS services. The user equipment may provide feedback to the network or the primary serving cell when it starts and stops receiving MBMS services, and then may switch back to the primary serving cell when MBMS services have ended or the user equipment no longer desires to receive MBMS services.
摘要:
Embodiments of user equipment (UE) and methods for enhanced discontinuous reception (DRX) operations for inter eNB carrier aggregation (CA) in an LTE network are generally described herein. In some embodiments, a UE is configured to be served by multiple serving cells. The first set of the serving cells may be associated with a first eNB and a second set of serving cells may be associated with a second eNB. In these embodiments, DRX operations may be performed independently in multiple serving cells belonging to the different eNBs. Other embodiments for enhanced DRX operations are also described.
摘要:
A method of determining reference signal received power (RSRP) by user equipment (UE) associated with a distributed antenna system (DAS) may include detecting at least three different reference signals in one or more common reference signals (CRSs) that are associated with different antennas in the DAS. The method may also include determining at least three different RSRPs corresponding to the at least three different reference signals. The at least three different RSRPs may be level 3 filtered to produce at least three corresponding filtered powers. The UE may report a maximum of the at least three corresponding filtered powers to the distributed antenna system.