Abstract:
The present disclosure includes apparatuses and methods for power consumption control. A number of embodiments include determining power consumption information for each phase in a combination of phases of a command, and authorizing execution of at least one of the phases in the combination based, at least partially, on the power consumption information determined for the at least one of the phases.
Abstract:
Apparatuses and methods for inferring threshold voltage distributions associated with memory cells via interpolation are described herein. An example includes determining soft data for a group of memory cells each programmed to one of a number of data states, wherein the soft data comprises a number of different soft data values, determining a quantity of memory cells associated with each of the different soft data values, and inferring at least a portion of a threshold voltage distribution associated with the group of memory cells via an interpolation process using the determined quantities of memory cells associated with each of the different soft data values.
Abstract:
The present disclosure includes boot partitions in memory devices and systems, and methods associated therewith. One or more embodiments include an array of memory cells, wherein the array includes a boot partition and a number of additional partitions. Sequential logical unit identifiers are associated with the additional partitions, and a logical unit identifier that is not in sequence with the sequential logical unit identifiers is associated with the boot partition.
Abstract:
Methods, devices, and systems for data modulation for groups of memory cells. Data modulation for groups of memory cells can include modulating N units of data to a combination of programmed states. Each memory cell of a group of G number of memory cells can be programmed to one of M number of programmed states, where M is greater than a minimum number of programmed states needed to store N/G units of data in one memory cell, and where the programmed state of each memory cell of the group is one of the combination of programmed states.
Abstract:
A memory device has an array of memory cells and a controller coupled to the array of memory cells. The controller is configured to determine a program window after a portion of a particular programing operation performed on the memory device is performed and before a subsequent portion of the particular programing operation performed on the memory device is performed. The controller is configured to determine the program window responsive to an amount of program disturb experienced by a particular state of a memory cell. The controller is configured to perform the subsequent portion of the particular programing operation performed on the memory device using the determined program window.
Abstract:
The present disclosure includes apparatuses and methods related to stopping criteria for layered iterative error correction. A number of methods can include receiving a codeword with an error correction circuit, iteratively error correcting the codeword with the error correction circuit including parity checking the codeword on a layer-by-layer basis and updating the codeword after each layer. Methods can include stopping the iterative error correction in response to a parity check being correct for a particular layer.
Abstract:
The present disclosure includes methods, devices, and systems for determining and using soft data in memory devices and systems. One or more embodiments include an array of memory cells and control circuitry coupled to the array. The control circuitry is configured to perform a number of sense operations on the memory cells using a number of sensing voltages to determine soft data associated with a target state of the memory cells, and adjust a sensing voltage used to determine the target state based, at least partially, on the determined soft data.
Abstract:
A memory device has an array of memory cells and a controller coupled to the array of memory cells. The controller is configured to determine a program window after a portion of a particular programming operation performed on the memory device is performed and before a subsequent portion of the particular programming operation performed on the memory device is performed. The controller is configured to determine the program window responsive to an amount of program disturb experienced by a particular state of a memory cell. The controller is configured to perform the subsequent portion of the particular programming operation performed on the memory device using the determined program window.
Abstract:
The present disclosure includes methods, devices, and systems for state change in systems having devices coupled in a chained configuration. A number of embodiments include a host and a number of devices coupled to the host in a chained configuration. The chained configuration includes at least one device that is not directly coupled to the host. The at least one device that is not directly coupled to the host is configured to change from a first communication state to a second communication state responsive to receipt of a command from the host.
Abstract:
The present disclosure includes apparatuses and methods for inferring threshold voltage distributions associated with memory cells via interpolation. A number of embodiments include determining soft data for a group of memory cells each programmed to one of a number of data states, wherein the soft data comprises a number of different soft data values, determining a quantity of memory cells associated with each of the different soft data values, and inferring at least a portion of a threshold voltage distribution associated with the group of memory cells via an interpolation process using the determined quantities of memory cells associated with each of the different soft data values.