Abstract:
A method for storing data in a storage system having solid-state memory is provided. The method includes determining portions of the solid-state memory that have a faster access rate and portions of the solid-state memory that have a slower access rate, relative to each other or to a threshold. The method includes writing data bits of erasure coded data to the portions of the solid-state memory having the faster access rate, and writing one or more parity bits of the erasure coded data to the portions of the solid-state memory having the slower access rate. A storage system is also provided.
Abstract:
A method of failure mapping is provided. The method includes distributing user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a chassis that couples the storage nodes as a storage cluster. Each of the plurality of storage nodes has a non-volatile solid-state storage with flash memory or other types of non-volatile memory and the user data is accessible via the erasure coding from a remainder of the plurality of storage nodes in event of two of the plurality of storage nodes being unreachable. The method includes determining that a non-volatile memory block in the memory has a defect and generating a mask that indicates the non-volatile memory block and the defect. The method includes reading from the non-volatile memory block with application of the mask, wherein the reading and the application of the mask are performed by the non-volatile solid-state storage.
Abstract:
A system and method for performing copy offload operations. When a copy offload operation from a first volume (pointing to a first medium) to a second volume (pointing to a second medium) is requested, the copy offload operation is performed without accessing the data being copied. A third medium is created, and the first medium is recorded as the underlying medium of the third medium. The first volume is re-pointed to the third medium. Also, a fourth medium is created, the second volume is re-pointed to the fourth medium, and the second medium is recorded as the underlying medium of the targeted range of the fourth medium. All other ranges of the fourth medium have the second medium as their underlying medium.
Abstract:
A method for storing data in a storage system having solid-state memory is provided. The method includes determining portions of the solid-state memory that have a faster access rate and portions of the solid-state memory that have a slower access rate, relative to each other or to a threshold. The method includes writing data bits of erasure coded data to the portions of the solid-state memory having the faster access rate, and writing one or more parity bits of the erasure coded data to the portions of the solid-state memory having the slower access rate. A storage system is also provided.
Abstract:
A storage grid is provided. The storage grid includes a first cluster, a second cluster, and a third cluster. Each of the first cluster, the second cluster and the third cluster is configured to store an amount of data ranging from a portion of a copy of the data to a full copy of the data. The first cluster has a full copy of data written to the first cluster and at least a partial copy of data written to the second and third cluster. The second cluster has a full copy of data written to the second cluster, and at least a partial copy of the data written to the first and third cluster. The third cluster has a full copy of data written to the third cluster and at least a partial copy of the data written to the first and second cluster. A method of storing data is also provided.
Abstract:
A plurality of storage nodes within a single chassis is provided. The plurality of storage nodes is configured to communicate together as a storage cluster. The plurality of storage nodes has a non-volatile solid-state storage for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes, with erasure coding of the user data. The plurality of storage nodes is configured to recover from failure of two of the plurality of storage nodes by applying the erasure coding to the user data from a remainder of the plurality of storage nodes. The plurality of storage nodes is configured to detect an error and engage in an error recovery via one of a processor of one of the plurality of storage nodes, a processor of the non-volatile solid state storage, or the flash memory.
Abstract:
A storage cluster is provided. The storage cluster includes a plurality of storage nodes within a chassis. The plurality of storage nodes has flash memory for storage of user data and is configured to distribute the user data and metadata throughout the plurality of storage nodes such that the storage nodes can access the user data with a failure of two of the plurality of storage nodes. Each of the storage nodes is configured to generate at least one address translation table that maps around defects in the flash memory on one of a per flash package basis, per flash die basis, per flash plane basis, per flash block basis, per flash page basis, or per physical address basis. Each of the plurality of storage nodes is configured to apply the at least one address translation table to write and read accesses of the user data.
Abstract:
A method for distribution of directories in a storage system is provided. The method includes distributing information, regarding location in the storage system of a plurality of files in a directory, to a plurality of owners in a plurality of storage nodes of the storage system, wherein ownership of differing subsets of the plurality of files of the directory is distributed among differing owners in differing storage nodes. The method includes receiving a request for location information in the storage system of a file of the plurality of files in the directory and determining, based on a file name of the file and an identity of the directory, which of the plurality of owners has ownership of the file and the location information for the file.
Abstract:
A method for storage array self-configuration is disclosed. The method includes accessing an authenticated token that comprises encrypted configuration data for a storage array, decrypting the configuration data, and based on the configuration data, executing with configuration executing components of the storage array a configuration of the storage array. The configuration is executed responsive to an authentication of the token.
Abstract:
A method of applying scheduling policies is provided. The method includes distributing user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a single chassis coupling the storage nodes as a cluster. The method includes receiving operations relating to a non-volatile memory of one of the plurality of storage nodes into a plurality of operation queues. The method includes evaluating each of the operations in the plurality of operation queues as to benefit to the non-volatile solid-state storage according to a plurality of policies. For each channel of a plurality of channels coupling the operation queues to the non-volatile memory, the method includes iterating a selection and an execution of a next operation from the plurality of operation queues, with each next operation having a greater benefit than at least a subset of operations remaining in the operation queues.