Abstract:
System, methods and apparatus are described that offer improved performance of a serial bus used for Inter-Integrated Circuit (I2C) and/or camera control interface (CCI) operations. CCI extension (CCIe) devices are described. CCIe devices may be configured as a bus master or as a slave. In one method, a CCIe transmitter may generate a transition number from a set of bits, convert the transition number into a sequence of symbols, and transmit the sequence of symbols in the signaling state of a two-wire serial bus. Timing information may be encoded in the transitions between symbols of consecutive pairs of symbols in the sequence of symbols. For example, each transition may cause a change in the signaling state of at least one wire of the two-wire serial bus. A CCIe receiver may derive a receive clock from the transitions in order to receive and decode the sequence of symbols.
Abstract:
A method for enabling 8-bit data word access over a protocol limited to 16-bit data word access is provided. Data may be encapsulated within the lowest 19 bits of a 20-bit number. If it is ascertained that an 8-bit data word is to be used in a system supporting only 16-bit data word access, a byte-enable indicator may be provided within a most significant bit of the 20-bit number while also allocating an 8-bit data region for transfer of the 8-bit data word. The 20-bit number may then be transcoded into a 12-digit ternary number, wherein a residual numerical region is defined as a number space by which a first numerical region defined for the 12-digit ternary number exceeds a second numerical region defined by the lowest 19 bits of the 20-bit number.
Abstract:
A method, an apparatus, and a computer program product are described. The apparatus generates a receive clock signal for receiving data from a multi-wire open-drain link by determining a transition in a signal received from the multi-wire open-drain link, generating a clock pulse responsive to the transition, delaying the clock pulse by a preconfigured first interval if the transition is in a first direction, and delaying the clock by a preconfigured second interval if the transition is in a second direction. The preconfigured first and/or second intervals are configured based on a rise time and/or a fall time associated with the communication interface and may be calibrated by measuring respective delays associated with clock pulses generated for first and second calibration transitions.
Abstract:
A method, an apparatus, and a computer program product are described. The apparatus generates a receive clock signal for receiving data from a multi-wire open-drain link by determining a transition in a signal received from the multi-wire open-drain link, generating a clock pulse responsive to the transition, delaying the clock pulse by a preconfigured first interval if the transition is in a first direction, and delaying the clock by a preconfigured second interval if the transition is in a second direction. The preconfigured first and/or second intervals are configured based on a rise time and/or a fall time associated with the communication interface and may be calibrated by measuring respective delays associated with clock pulses generated for first and second calibration transitions.
Abstract:
A clock recovery circuit is provided comprising a receiver circuit and a clock extraction circuit. The receiver circuit may be adapted to decode a differentially encoded signal on a plurality of data lines, where at least one data symbol is differentially encoded in state transitions of the differentially encoded signal. The clock extraction circuit may be adapted to obtain a clock signal from state transition signals derived from the state transitions.
Abstract:
Apparatus, systems and methods for error detection in transmissions on a multi-wire interface are disclosed. A method for correcting transmission errors in multi-wire transition-encoded interface may include determining whether a symbol error is present in the sequence of symbols based on a value of an error detection code (EDC) in the received plurality of bits, generating one or more permutations of the sequence of symbols, where each permutation includes one symbol that is different from corresponding symbols in the sequence of symbols and different from corresponding symbols in other permutations. A permutation in the one or more permutations may be identified as including a corrected sequence of symbols when it produces a decoded EDC value that matches an expected EDC value. The expected EDC value may correspond to a predefined value for EDCs transmitted over the multi-wire interface to enable detection of up to two symbol errors at the receiver.
Abstract:
Apparatus, systems and methods for error detection in transmissions on a multi-wire interface are disclosed. A method for transmitting data on the multi-wire interface includes transmitting data on a multi-wire interface includes obtaining a plurality of bits to be transmitted over a plurality of connectors, converting the plurality of bits into a sequence of symbols, and transmitting the sequence of symbols on the plurality of connectors. A predetermined number of least significant bits in the plurality of bits may be used for error detection. The predetermined number of least significant bits may have a constant value that is different from each of a plurality of error values. A symbol error affecting one or two symbols in the sequence of symbols may cause a decoded version of the predetermined number of least significant bits to have value that is one of a plurality of error values.
Abstract:
Methods and systems are disclosed for determining at least one actuation characteristic of an imaging device. For example, one method includes determining a target distance to move a lens by an actuator to focus a scene on an image sensor, where moving the lens by the actuator causes an associated lens vibration having at least one actuation characteristic, determining a scan sequence having a plurality of successive measurements, each measurement having at least a first measurement parameter and subsequent measurement parameter, each measurement parameter including at least one step and at least one time delay, moving the lens the target distance for each successive measurement based on the measurement parameters of each successive measurement, measuring a performance indicator of each successive measurement, and determining at least one actuation characteristic based on the first measurement parameter of the measurement having the highest performance indicator.
Abstract:
System, methods and apparatus are described that facilitate communication of data over a multi-wire data communications link, particularly between two devices within an electronic apparatus. A receiving device receives a sequence of symbols over a multi-wire link. The receiving device further receives a clock signal via a dedicated clock line, wherein the dedicated clock line is separate from, and in parallel with, the multi-wire link. The receiving device decodes the sequence of symbols using the clock signal. In an aspect, a second clock signal is embedded in guaranteed transitions between pairs of consecutive symbols in the sequence of symbols. Accordingly, the receiving device decodes the sequence of symbols using the clock signal received via the dedicated clock line while ignoring the second clock signal.
Abstract:
Systems, methods and apparatus extract data and clocks from a multi-wire bus that includes a first lane operated in accordance with a camera control interface (CCIe) mode of operation or a first lane operated in accordance with an N! mode of operation. Timing information derived from a sequence of symbols received from the first lane may be used to deserialize data received on a second lane of the multi-wire bus or decode a sequence of symbols received on the second lane. The symbols in a pair of consecutive symbols transmitted on the first lane cause different signaling states. Data on the second lane may be deserialized using on the receive clock derived from the timing information. In a CCIe lane, the final symbol of the sequence of symbols may be suppressed or a setup condition curtailed when the final symbol produces a signaling state equivalent to the setup condition.