Abstract:
A semiconductor device having a high aperture ratio and including a capacitor capable of increasing the charge capacity is provided. A semiconductor device includes a transistor over a substrate, a first light-transmitting conductive film over the substrate, an oxide insulating film covering the transistor and having an opening over the first light-transmitting conductive film, a nitride insulating film over the oxide insulating film and in contact with the first light-transmitting conductive film in the opening, a second light-transmitting conductive film connected to the transistor and having a depressed portion in the opening, and an organic resin film with which the depressed portion of the second light-transmitting conductive film is filled.
Abstract:
A semiconductor device has an insulating surface provided with a transistor and a capacitor. The transistor includes a gate electrode, an oxide semiconductor film overlapping with the gate electrode, a gate insulating film between the gate electrode and the oxide semiconductor film, and a first conductive film serving as a pair of electrodes in contact with the oxide semiconductor film. An oxide insulating film in contact with the oxide semiconductor film, a metal oxide film over the oxide insulating film, and a second conductive film serving as a pixel electrode which is in an opening in the metal oxide film and is in contact with the first conductive film are provided. The capacitor includes a film having conductivity over the gate insulating film, the second conductive film, and the metal oxide film provided between the film having conductivity and the second conductive film.
Abstract:
In the liquid crystal display device in which a guest-host liquid crystal layer is provided between a first substrate having a reflective film which is a pixel electrode layer (also referred to as a first electrode layer) and a second substrate having a common electrode layer (also referred to as a second electrode layer), the reflective film which is a pixel electrode layer is projected into the liquid crystal layer, and a micron-sized first unevenness and a nano-sized second unevenness on the first unevenness are provided.
Abstract:
A semiconductor device having favorable electrical characteristics is provided. A semiconductor device having stable electrical characteristics is provided. A highly reliable semiconductor device is provided. The semiconductor device includes a semiconductor layer, a first insulating layer, and a first conductive layer. The semiconductor layer includes an island-shaped top surface. The first insulating layer is provided in contact with a top surface and a side surface of the semiconductor layer. The first conductive layer is positioned over the first insulating layer and includes a portion overlapping with the semiconductor layer. In addition, the semiconductor layer includes a metal oxide, and the first insulating layer includes an oxide. The semiconductor layer includes a first region overlapping with the first conductive layer and a second region not overlapping with the first conductive layer. The first insulating layer includes a third region overlapping with the first conductive layer and a fourth region not overlapping with the first conductive layer. Furthermore, the second region and the fourth region contain phosphorus or boron.
Abstract:
The transistor includes a first gate electrode, a first insulating film over the first gate electrode, an oxide semiconductor film over the first insulating film, a source electrode over the oxide semiconductor film, a drain electrode over the oxide semiconductor film, a second insulating film over the oxide semiconductor film, the source electrode, and the drain electrode, and a second gate electrode over the second insulating film. The first insulating film includes a first opening. A connection electrode electrically connected to the first gate electrode through the first opening is formed over the first insulating film. The second insulating film includes a second opening that reaches the connection electrode. The second gate electrode includes an oxide conductive film and a metal film over the oxide conductive film. The connection electrode and the second gate electrode are electrically connected to each other through the metal film.
Abstract:
A metal oxide film includes indium, M, (M is Al, Ga, Y, or Sn), and zinc and includes a region where a peak having a diffraction intensity derived from a crystal structure is observed by X-ray diffraction in the direction perpendicular to the film surface. Moreover, a plurality of crystal parts is observed in a transmission electron microscope image in the direction perpendicular to the film surface. The proportion of a region other than the crystal parts is higher than or equal to 20% and lower than or equal to 60%.
Abstract:
To suppress a change in electrical characteristics in a transistor including an oxide semiconductor film. The transistor includes a first gate electrode, a first insulating film, an oxide semiconductor film, a source electrode, a drain electrode, a second insulating film, a second gate electrode, and a third insulating film. The oxide semiconductor film includes a first oxide semiconductor film on the first gate electrode side, and a second oxide semiconductor film over the first oxide semiconductor film. The first oxide semiconductor film and the second oxide semiconductor film include In, M, and Zn (M is Al, Ga, Y, or Sn). In a region of the second oxide semiconductor film, the number of atoms of In is smaller than that in the first oxide semiconductor film. The second gate electrode includes at least one metal element included in the oxide semiconductor film.
Abstract:
The stability of steps of processing a wiring formed using copper or the like is increased. The concentration of impurities in a semiconductor film is reduced. Electrical characteristics of a semiconductor device are improved. A semiconductor device includes a semiconductor film, a pair of first protective films in contact with the semiconductor film, a pair of conductive films containing copper or the like in contact with the pair of first protective films, a pair of second protective films in contact with the pair of conductive films on the side opposite the pair of first protective films, a gate insulating film in contact with the semiconductor film, and a gate electrode overlapping with the semiconductor film with the gate insulating film therebetween. In a cross section, side surfaces of the pair of second protective films are located on the outer side of side surfaces of the pair of conductive films.
Abstract:
A semiconductor device having favorable characteristics is provided. A semiconductor device having stable electrical characteristics is provided. An island-shaped insulating layer containing an oxide is provided in contact with a bottom surface of a semiconductor layer containing a metal oxide that exhibits semiconductor characteristics. The insulating layer containing an oxide is provided in contact with a portion of the semiconductor layer to be a channel formation region and is not provided under portions to be low-resistance regions.
Abstract:
A semiconductor device with favorable electrical characteristics is provided. A highly reliable semiconductor device is provided. The semiconductor device includes a semiconductor layer, a first insulating layer, a second insulating layer, a metal oxide layer, and a conductive layer; the first insulating layer, the metal oxide layer, and the conductive layer are stacked in this order over the semiconductor layer; an end portion of the first insulating layer is located inward from an end portion of the semiconductor layer; an end portion of the metal oxide layer is located inward from the end portion of the first insulating layer; and an end portion of the conductive layer is located inward from the end portion of the metal oxide layer. The second insulating layer is preferably provided to cover the semiconductor layer, the first insulating layer, the metal oxide layer, and the conductive layer. It is preferable that the semiconductor layer include a first region, a pair of second regions, and a pair of third regions; the first region overlap with the first insulating layer and the metal oxide layer; the second regions between which the first region is sandwiched overlap with the first insulating layer and not overlap with the metal oxide layer; the third regions between which the first region and the pair of second regions are sandwiched not overlap with the first insulating layer; and the third regions be in contact with the second insulating layer.