Abstract:
A power storage device having flexibility is provided. A power storage device of which the capacity is not likely to deteriorate even when being curved is provided. A power storage device includes a first electrode, a second electrode, and an electrolytic solution. The first electrode and the second electrode overlap with each other. The first electrode includes a first current collector and a first active material layer. The first current collector has a first surface and a second surface. The first active material layer is provided on the first surface. The first current collector has a first bent portion with the second surface inside. The second surface includes a first region and a second region. The first region overlaps with the second region. The first region is connected to the second region at a portion different from the first bent portion.
Abstract:
In the case where a secondary battery is repetitively curved, portions which tend to cause deterioration such as crack or breakage are, for example, a positive electrode tab and a negative electrode tab. This is because these portions are narrow projected portions, and tend to have low mechanical strength against repetitive curving in some cases. In view of the above, the positive electrode tab and the negative electrode tab are provided in portions relatively less affected by curving. More specifically, secondary battery includes a positive electrode, a positive electrode lead electrically connected to the positive electrode, a negative electrode, a negative electrode lead electrically connected to the negative electrode, a separator, and an exterior body wrapping the positive electrode, the negative electrode, and the separator. The positive electrode, the separator, the negative electrode, and the exterior body can be curved in a first direction. The positive electrode lead and the negative electrode lead are drawn from opposite sides of the exterior body.
Abstract:
A power storage device with high capacity is provided. Alternatively, a power storage device with excellent cycle characteristics is provided. Alternatively, a power storage device with high charge and discharge efficiency is provided. Alternatively, a power storage device with a long lifetime is provided. A negative electrode active material is provided over a negative electrode current collector, and the negative electrode active material layer is formed in such a manner that first layers and second layers are alternately stacked. The first layer includes at least an element selected from Si, Mg, Ca, Ga, Al, Ge, Sn, Pb, Sb, Bi, Ag, Zn, Cd, As, Hg, and In. The second layer includes oxygen and the same element as the one included in the first layer.
Abstract:
A decomposition reaction of an electrolyte solution and the like caused as a side reaction of charge and discharge is minimized in repeated charge and discharge of a lithium ion battery or a lithium ion capacitor, and thus the lithium ion battery or the lithium ion capacitor can have long-term cycle performance. A negative electrode for a power storage device includes a negative electrode current collector and a negative electrode active material layer which includes a plurality of particles of a negative electrode active material. Each of the particles of the negative electrode active material has an inorganic compound film containing a first inorganic compound on part of its surface. The negative electrode active material layer has a film in contact with an exposed part of the negative electrode active material and part of the inorganic compound film. The film contains an organic compound and a second inorganic compound.
Abstract:
In the case where a film, which has lower strength than a metal can, is used as an exterior body of a secondary battery, a current collector provided in a region surrounded by the exterior body, an active material layer provided on a surface of the current collector, or the like might be damaged when force is externally applied to the secondary battery. A secondary battery that is durable even when force is externally applied thereto is provided. A region that is easily partly bent and a region that is not easily partly bent owing to a protective material provided in the region are intentionally formed to obtain the durable secondary battery.
Abstract:
A secondary battery with an exterior body having a novel sealing structure, and a structure of a sealing portion that relaxes a stress of deformation are provided. The secondary battery includes a positive electrode, a negative electrode, an electrolyte solution, and an exterior body enclosing at least part of the positive electrode, at least part of the negative electrode, and the electrolyte solution. The exterior body includes a first region having a shape with a curve, a shape with a wavy line, a shape with an arc, or a shape with a plurality of inflection points, and a second region having the same shape as the first region. The first region is in contact with the second region. Alternatively, the first region has a shape without a straight line. The secondary battery may be flexible, and the exterior body in a region having flexibility may include the first region.
Abstract:
A power storage device which has high charge/discharge capacity and less deterioration in battery characteristics due to charge/discharge and can perform charge/discharge at high speed is provided. A power storage device includes a negative electrode. The negative electrode includes a current collector and an active material layer provided over the current collector. The active material layer includes a plurality of protrusions protruding from the current collector and a graphene provided over the plurality of protrusions. Axes of the plurality of protrusions are oriented in the same direction. A common portion may be provided between the current collector and the plurality of protrusions.
Abstract:
A light-blocking device that includes a display device is provided. A method for unfolding a light-blocking device that includes a display device is provided. The light-blocking device is used for a vehicle. The light-blocking device includes a light-blocking portion, a storage portion, and a driving means. The light-blocking portion includes a display portion on a surface on the inside of the vehicle. The storage portion is positioned in a roof portion of the vehicle. The driving means has a first function of unfolding the light-blocking portion in a first position, a second function of unfolding the light-blocking portion in a second position, and a third function of storing the light-blocking portion in a third position inside the storage portion. The first position is a position where the light-blocking portion does not obstruct driver's forward vision. The second position is a position where the light-blocking portion covers 80% or higher of the area of a windshield of the vehicle.
Abstract:
Space-saving in an automobile or the like provided with a battery is achieved. Design flexibility of an automobile or the like can be improved. An electric power control method or an electric power control system capable of utilizing electric power efficiently is provided. It is an electric power control system of an automobile including a car body, a first battery, a second battery, and a control unit. The control unit obtains states of charge of the first battery and the second battery, determines whether or not a difference between remaining capacities of the first battery and the second battery exceeds a predetermined value, and controls transmission of electric power between the first battery and the second battery, in the case where the difference in the remaining capacities exceeds the predetermined value, to be made such that the remaining capacities are close to each other.
Abstract:
A secondary battery with high capacity per unit volume can be provided. A flexible secondary battery with a novel structure can be provided. A secondary battery that can be bent repeatedly can be provided. A highly reliable secondary battery can be provided. A long-life secondary battery can be provided. A secondary battery comprises an inner structure and an exterior body that surrounds the inner structure. The inner structure comprises a positive electrode and a negative electrode. The exterior body comprises a first exterior film and a second exterior film. A region comprising reduced graphene oxide lies between the first exterior film and the second exterior film. The graphene oxide preferably comprises a region where the concentration of oxygen is higher than or equal to 2 atomic percent and lower than or equal to 20 atomic percent.