摘要:
Provided is a rust-preventive composition showing excellent rust-preventive performance for plate joining parts such as doors of automotive bodies, the composition having sufficient corrosion resistance and being capable of preventing dripping from automotive bodies. A rust-preventive composition including: a rust-preventive additive; a wax having a melting point within the range of 60° C. to 130° C. selected from microcrystalline waxes and polyethylene-based or polypropylene-based synthetic waxes; bentonite; a hydrogenated oil; and two or more kinds of diluents having different viscosities; the rust-preventive additive being contained in an amount within the range of 12% by mass to 39% by mass with respect to the total composition, the bentonite being contained in an amount within the range of 2% by mass to 6% by mass with respect to the total composition, the wax being contained in an amount within the range of 3% by mass to 13% by mass with respect to the total composition.
摘要:
A medical instrument in which an inorganic salt solid such as apatite into which a peptide hormone or the like is embedded is placed so that a metal or the like is coated therewith, in which the inorganic salt solid is provided by controlled delay co-precipitation or the like in an unstable supersaturated calcium phosphate solution, and the medical instrument is exposed to ionizing radiation at a dose sufficient for sterilization.
摘要:
The purpose of the present invention is to provide a thermoelectric conversion element having a film which not only maintains sufficient adhesion even when exposed to a high temperature but also exhibits excellent oxidation resistance and crack resistance. The problem is solved by a thermoelectric conversion element including a thermoelectric conversion component, in which the thermoelectric conversion component contains magnesium silicide and/or manganese silicide and is covered with a film containing Si and Zr.
摘要:
The present invention addresses the problem of providing a surface treatment agent for aluminum or aluminum alloy materials, which is capable of forming, on an aluminum or an aluminum alloy material, a surface treatment coating that has excellent corrosion resistance and has excellent corrosion resistance even when the coating is exposed to a high temperature. The problem is solved by a surface treatment agent which is used for surface treatment of an aluminum or an aluminum alloy material and which contains a trivalent chromium-containing ion (A), at least one ion (B) selected from a titanium-containing ion and a zirconium-containing ion, a zinc-containing ion (C), a free fluorine ion (D), and a nitrate ion (E).
摘要:
A surface treatment solution for a plated steel sheet to be hot-pressed comprising a ZnO aqueous dispersion (A) and a water dispersible organic resin (B), wherein the ZnO aqueous dispersion (A) comprises water and ZnO particle size having 50 to 300 nm particles, the water dispersible organic resin (B) has a 5 to 45 mgKOH/g acid value and 5 to 300 nm emulsion particle size, and a mass ratio (WA/WB) of a mass of ZnO particles in the ZnO aqueous dispersion (WA) to a mass of solid content of the water dispersible organic resin (WB) is 30/70 to 95/5.
摘要:
The aluminum-zinc plated steel sheet according to the present invention includes a plated steel sheet and a covering film that covers the plated steel sheet. The covering film contains a basic compound of transition metal other than cobalt and chromium, and metallic cobalt, or metallic cobalt and a cobalt compound. An amount of the covering film per one side is within a range of 0.01 to 0.8 g/m2. An amount in terms of mass of transition metal other than cobalt in the covering film per one side of the plated steel sheet is within a range of 4 to 400 mg/m2. An amount in terms of mass of cobalt in the covering film per one side of the plated steel sheet is within a range of 0.1 to 20 mg/m2.
摘要:
A water-based surface treatment agent includes an organic-inorganic silicon compound (A) and inorganic particle (B), wherein the organic-inorganic silicon compound (A) is adapted to be a compound that is obtained by mixing a colloidal silica (C) and an organoalkoxysilane (D). In this regard, the ratio (MB/MA) between the solid content mass MA of the organic-inorganic silicon compound (A) and the solid content mass MB of the inorganic particle (B) preferably falls within the range from 0.2 or more and 2.0 or less, the average particle size of the organic-inorganic silicon compound (A) preferably falls within the range of 3 nm or more and 500 nm or less. In addition, the average particle size of the inorganic particle (B) preferably falls within the range of 10 nm or more and 600 nm or less.
摘要:
A water-containing lubricant coating agent, used in metal plastic working, includes a water content of 3 to 50 mass %, at least one lipophilic lubricating component (A) and/or at least one solid lubricant (B) with cleavability dispersed in water, and at least one water-soluble lubricating component (C) selected from fatty acid components having 12 to 20 carbon atoms; wherein a mass ratio of (C)/[(A)+(B)]=0.05 to 0.5.
摘要:
A hydrophilic surface treatment agent for an aluminum-containing metallic heat exchanger, which is obtained by mixing: a water-soluble resin (A) having at least one or more functional groups of an amide group, a hydroxyl group, and a carboxyl group, or a water-soluble resin (A) including, in a skeleton thereof, an amide linkage; colloidal silica (B); organo alkoxy silane and/or a hydrolysate thereof (C); a cross-linking agent (D) capable of forming cross-linkage with the water-soluble resin (A); and water (E), wherein the ratio {(B)+(C)}/{(A)+(B)+(C)+(D)} is 0.1 to 0.5 in terms of solid content ratio (mass ratio), and the ratio (C)/(B) is 0.5 to 4.0 in terms of solid content ratio (mass ratio).
摘要:
Air is continuously supplied into upper spaces via an air supply duct, during coating of an object to be coated in a paint booth, whereby the air is jetted through jetting holes and flows downwards along side walls. The air flowing downwards along the side walls is sucked into lower spaces, via clearances, and is discharged out of the paint booth via air exhaust ducts.