Abstract:
A cascade for a jet engine thrust reverser is fabricated by co-consolidating pre-consolidated thermoplastic strongbacks and vanes. The strongbacks are reinforced with continuous fibers, and the vanes are reinforced with discontinuous fibers.
Abstract:
Methods of manufacturing spar caps for a rotor blade of a wind turbine are disclosed. The method includes providing a plurality of pultrusions constructed of one or more fibers or fiber bundles cured via a resin material. Another step includes tapering the ends of the pultrusions at a predetermined angle. The method also includes arranging the tapered pultrusions in a mold of the spar cap. The method also includes joining the plurality of pultrusions together so as to form the spar cap.
Abstract:
Methods for fabricating lightweight or hollow metal parts are disclosed. First, a polymer is formed into an article of a desired shape or geometry. The outer surface of the article is prepared to receive a catalyst and then the outer surface is activated with the catalyst. A first metallic layer is then plated onto the outer surface to form a structure. Optional additional metallic layers may be applied. The polymer may be removed from the structure before it is subjected to a final heat treatment for alloying purposes.
Abstract:
A method is disclosed of manufacturing a push rod for switching a vacuum interrupter by moulding the push rod with a plastic material. The push rod can include a core component configured for receiving a spring element. The push rod can also include a rod component which may include another second material, wherein a core component is embedded in the rod component to form the push rod.
Abstract:
Methods of making a fiber-reinforced thermoplastic polyurethane composite are described. The methods may include applying a sizing composition to a plurality of fibers to make sized fibers, where the sizing composition may include at least one curative for a thermoplastic polyurethane prepolymer. The sized fibers may be contacted with a thermoplastic polyurethane prepolymer composition to form a resin-fiber amalgam, where the thermoplastic polyurethane prepolymer composition includes 50 wt. % or less of a total amount of the curative that is also present on the sized fibers. The resin-fiber amalgam may then be cured to form the fiber-reinforced thermoplastic polyurethane composite.
Abstract:
A production method of producing a fiber-reinforced resin molding includes: kneading, in a kneader, molten thermoplastic resin with opened reinforcing fibers obtained by opening a bundle of reinforcing fibers, to produce a kneaded mixture; and placing or charging the kneaded mixture into a molding device to produce a fiber-reinforced resin molding.
Abstract:
It is an object of the present invention to provide a process capable of manufacturing various types of curved members having a high-grade design surface which are used as glazing members for means of transport such as automobiles at a low cost.The present invention is the process of manufacturing a curved member having a high-grade design surface, comprises the steps of: (1) preparing a sheet having a high-grade design surface by injection compression molding a resin material containing a thermoplastic resin; (2) preheating the sheet at a temperature of (Tg+5)° C. to (Tg+70)° C. (Tg(° C.) is the glass transition temperature of the resin material) to soften it; and (3) applying pressure to the softened sheet to curve the high-grade design surface.
Abstract:
A membrane formulation of fluorinated copolymer porous membrane includes: 15-50 wt % ethylene-chlorotrifluoroethylene copolymer, 30-85 wt % diluent and 0-20 wt % composite pore-forming agent, totally 100 wt %; wherein the diluent is selected from a group consisting of di-isooctyladinpate, di-isooctyladinpate with dibutyl phthalate, diethyl phthalate and dioctyl phthalate with any proportion. Methods for preparing a fluorinated copolymer porous flat membrane and a fluorinated copolymer hollow fiber porous membrane with the above formulation are also provided. With the formulation, a membrane-forming temperature is reduced to below 200° C., and processes thereof are convenient. Furthermore, membrane mechanical property is excellent, porosity is high, permeability is sufficient, and the method is suitable for membrane separation under severe conditions such as acid-base mediums and organic solvents.
Abstract:
A computer-implemented simulation method for use in a molding process comprises steps of specifying a simulating domain corresponding to a genuine domain in a mold disposed on a molding machine, wherein the genuine domain has a mold cavity to be filled with a fluid having fibers from the molding machine in order to prepare a molding product; performing a virtual molding to generate a shear rate distribution of the fluid having the fibers in the simulating domain while using a molding condition for the molding machine; and calculating an orientation distribution of the fibers by taking into consideration an anisotropic rotary diffusion effect of the fibers and the shear rate distribution, wherein the anisotropic rotary diffusion effect is determined by taking into consideration a square of a rate-of-deformation tensor.
Abstract:
A wind turbine blade root having: an annular structure extending about a main axis and made of a composite material including a matrix and reinforcing fibers; first longitudinal reinforcing elements, which are incorporated in the annular structure, extend in the direction of the main axis, and are spaced apart in a circle about the main axis; and an annular reinforcing element connecting the first longitudinal reinforcing elements and having first coupling portions for connection to the first longitudinal reinforcing elements.