Abstract:
A method of forming a wavelength detector that includes forming a first transparent material layer having a uniform thickness on a first mirror structure, and forming an active element layer including a plurality of nanomaterial sections and electrodes in an alternating sequence atop the first transparent material layer. A second transparent material layer is formed having a plurality of different thickness portions atop the active element layer, wherein each thickness portion correlates to at least one of the plurality of nanomaterials. A second mirror structure is formed on the second transparent material layer.
Abstract:
Novel structures of photovoltaic cells (also called as solar cells) are provided. The cells are based on nanoparticles or nanometer-scaled wires, tubes, and/or rods, which are made of electrical materials covering semiconductors, insulators, and also metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications such as in space, commercial, residential and industrial applications.
Abstract:
A method for preparing a mesoscopic solar cell based on perovskite light absorption materials, the method including 1) preparing a hole blocking layer on a conductive substrate; 2) preparing and sintering a mesoporous nanocrystalline layer, an insulation separating layer, and a hole collecting layer on the hole blocking layer in order; and 3) drop-coating a precursor solution on the hole collecting layer, and allowing the precursor solution to penetrate pores of the mesoporous nanocrystalline layer via the hole collecting layer from top to bottom, and drying a resulting product to obtain a mesoscopic solar cell.
Abstract:
A passivated iron disulfide (FeS2) surface encapsulated by an epitaxial zinc sulfide (ZnS) capping layer or matrix is provided. Also disclosed are methods for passivating the surface of crystalline iron disulfide by encapsulating it with an epitaxial zinc sulfide capping layer or matrix. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by ZnS.
Abstract:
A composite material is described. The composite material comprises semiconductor nanocrystals, and organic molecules that passivate the surfaces of the semiconductor nanocrystals. One or more properties of the organic molecules facilitate the transfer of charge between the semiconductor nanocrystals. A semiconductor material is described that comprises p-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of electrons in the semiconductor material being greater than or equal to a mobility of holes. A semiconductor material is described that comprises n-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of holes in the semiconductor material being greater than or equal to a mobility of electrons.
Abstract:
A hybrid organic-inorganic thin film is provided. The hybrid organic-inorganic thin film comprising: an organic-phase comprising a porous organic nanostructure comprised of an interpenetrating network having at least one dimension between 0.1 and 100 nm; and an inorganic phase at least partially distributed within the porosity of the organic phase. In a first aspect, the organic phase has a first band gap and the inorganic phase has a second band gap different from the first band gap. A method of producing an organic-inorganic energy harvesting device and a device therefrom comprising the hybrid organic-inorganic thin film is provided.
Abstract:
In general, the invention relates to a unit that includes a semiconductor and a plasmonic material disposed on the semiconductor, where a potential barrier is formed between the plasmonic material and the semiconductor. The unit further includes an insulator disposed on the semiconductor and adjacent to the plasmonic material and a transparent conductor disposed on the plasmonic material, where, upon illumination, the plasmonic material is excited resulting the excitation of an electron with sufficient energy to overcome the potential barrier.
Abstract:
A solar cell comprises a layer (12) of p/n-doped semiconductor nanowires (22), at least one polymer layer (10), wherein the layer (12) of p/n-doped semiconductor nanowires (22) is at least partially embedded in the polymer layer (10), and the polymer layer (10) has a first surface (32) and a second surface (34), wherein, in a state of operation, the first surface (32) is closer to incident light (20) at a location of incidence than the second surface (34), and wherein an area of the first surface (32) is larger than an area of the second surface (34).
Abstract:
It is an object to provide a photoelectric conversion device with high photoelectric conversion efficiency that improves reliability by increasing contact force between a light absorbing layer and an electrode layer. The photoelectric conversion device includes an electrode layer, and a light absorbing layer located on the electrode layer. The light absorbing layer contains a compound semiconductor. The light absorbing layer comprises a first layer close to the electrode layer and a second layer located on the first layer. The first layer has a void ratio lower than that of the second layer.
Abstract:
Nanoparticle for a solar power system for increasing light utilisation, with a core selected from materials comprising metals, metal alloys, semi-conductors, electrically conductive non-metals, electrically conductive compounds and mixtures thereof, whereby at least one first shell is arranged around the core.