Abstract:
Disclosed is a pouch including a first sealing portion wherein an upper sheet and a lower sheet are sealed, and a second sealing portion present in a partial or entire region of the first sealing portion.The pouch further includes a second sealing portion present in a partial or entire region of the first sealing portion, thus efficiently preventing permeation of external moisture and leakage of electrolyte solution through the first sealing portion and enabling fabrication of batteries with improved capacitance maintenance and resistance increase.
Abstract:
An electric storage cell includes a hard casing configured to house an electric storage element and electrolyte, and an electrode terminal connected to a charge collector of the electric storage element and exposed to an outside of the hard casing, the electric storage cell being chargeable/dischargeable using the electrode terminal, wherein the electrode terminal has a charge collector connecting portion connected to the charge collector through an opening formed in the hard casing, and a main body bonded to an outer circumferential surface of the hard casing to make a surface contact.
Abstract:
An outer casing material for a battery is provided which is constituted by laminating an outer layer that includes a heat-resistant resin film, a metal foil layer, and an inner layer that includes a thermoplastic resin film, wherein a melt flow rate of the inner layer is in a range of greater than or equal to 1 and less than 10.
Abstract:
The disclosure discloses a method for manufacturing a battery shell applicable to an electronic device. The method includes providing a metal substrate, a metal implanting component including a connecting part disposed thereon; bonding the metal implanting component to the metal substrate; and forming a plastic component on the metal substrate by an insert molding process. The plastic component covers the metal implanting component. By bonding the plastic component to the bonding part of the metal implanting component, the bonding strength is enforced.
Abstract:
A casing for a lithium bipolar electrochemical battery including a bipolar element. The casing includes a composite material including a matrix and at least one porous reinforcement, the matrix of which includes at least one hardened polymer impregnating the at least one porous reinforcement, wherein the at least one porous reinforcement and the at least one hardened polymer encase the bipolar element and maintain a determined pressure on either side of the bipolar element to maintain a determined contact between its constituents.
Abstract:
A battery pack includes: a battery including a battery element covered with a packaging member, the battery element including a positive electrode and a negative electrode which are spirally wound together or stacked on one another through a separator; a protection circuit board for the battery; and a covering material collectively covering the battery and the protection circuit board. The covering material includes a shape-retaining polymer. The shape-retaining polymer contains an insulating curable polyurethane resin including polyol and polyisocyanate.
Abstract:
An electro-chemical device comprises a package including a metal film, a battery element sealed within the package, resin layers disposed at least on the inside of a seal part of the package, and a lead extending from the battery element to the outside of the package through between the resin layers at the seal part of the package. The lead has a special form into which the resin of the resin layers bites, so that the lead is firmly buried in the resin layers, whereby the lead is fully inhibited from moving. Therefore, an electro-chemical device having a high quality can be obtained.
Abstract:
Disclosed is a flexible battery including a sheet-like electrode group, an electrolyte, and a housing with flexibility enclosing the electrode group and electrolyte. The housing includes a film material folded into two in which the electrode group is inserted. The film material has two facing portions respectively facing two principal surfaces of the electrode group, a fold line which is between the two facing portions and along which the film material is folded, and two bonding margins respectively set around the two facing portions. The two bonding margins are bonded to each other into a bonded portion. At least the two facing portions of the film material are formed in a corrugated shape having a plurality of ridge and valley lines arranged in parallel to each other. The ridge lines in one of the two facing portions are overlapped with the valley lines in the other. The fold line is parallel to the ridge and valley lines.
Abstract:
An injection molding composition includes specific amounts of a poly(arylene ether), a rubber-modified polystyrene, a bisphenol bis(diaryl phosphate), and a hydrogenated block copolymer of an alkenyl aromatic compound and a conjugated diene. The composition exhibits improved hydrolysis resistance and is useful for injection molding lead acid battery cases that exhibit improved hydrolysis resistance when employed use in hot, humid environments.
Abstract:
The galvanic cell according to the invention comprises at least one current conductor and a casing. Said casing at least partially surrounds said galvanic cell. A contact area is assigned to said casing. The casing is at least partially materially engaged with the current conductor via the contact area. The casing comprises at least one first layer and one second layer. The materials of said first layer and said second layer of the casing are different in respect to at least one chemical material.