Abstract:
A new optically pumped far infrared (FIR) laser with separate pump beam reflector and FIR output coupler is developed. The configuration of the new FIR laser greatly simplifies the tuning of the laser and enables the optimization of the pump beam absorption without affecting the laser alignment.
Abstract:
A slider includes a slot waveguide configured to receive energy from an input surface. The slot waveguide has first and second high-index regions surrounding a middle region that extends along a light propagation direction. The middle region has a refractive index less than that of the first and second high index regions. A near-field transducer is at an output portion of the middle region at media-facing surface. The near-field transducer has first and second plates parallel to the media-facing surface with a gap therebetween. An active laser region has a front facet optically coupled to the input surface of the slider. A reflective back facet of the laser and the near-field transducer define a single optical resonator.
Abstract:
The subject invention includes a semiconductor laser with the laser having a DBR mirror on a substrate, a quantum well on the DBR mirror, and an interior CGH with a back propagated output for emitting a large sized Gaussian and encircling high energy. The DBR mirror has a plurality of GaAs/AlGaAs layers, while the quantum well is composed of AlGaAs/InGaAs. The CGH is composed of AlGaAs.
Abstract:
A vertical cavity surface emitting laser (VCSEL) includes a substrate having an aperture that allows light generated in an active layer of the VCSEL to exit the VCSEL after propagation through a first set of semiconductor layers. The VCSEL further includes an opaque bottom layer that blocks light generated in the active layer and propagated through a second set of semiconductor layers. The opaque bottom layer can be attached to a heat sink for heat dissipation thereby allowing the VCSEL to be operated at high power levels. The active layer is sandwiched between the first set of semiconductor layers and the second set of semiconductor layers. Unlike a traditional VCSEL where only certain wavelengths of light can propagate through a solid substrate that is “transparent” to these particular wavelengths, the aperture provided in the substrate of a VCSEL in accordance with the disclosure allows for propagation of many different wavelengths.
Abstract:
The invention describes a laser device (100) enabling controlled emission of individual laser beams (194). The laser device (100) comprises an optically pumped extended cavity laser with one gain element whereby a multitude of pump lasers (110) are provided in order to generate independent pump beams (191) and thus corresponding laser beams (194). The laser device (100) may be used to enable simplified or improved laser systems (500) as, for example, two or three-dimensional laser printers. The pump laser (110) may be VCSEL and the laser (160) may be a VECSEL monolithically integrated with the pump VCSEL array on the same substrate. Pump mirrors (140) and external cavity mirror (150) may be integrated into a single optical reflector with regions having different curvature. The laser emission is controlled by the pump light, i.e. transversal shape of the laser beam and/or number of laser beams is controlled by switching on/off the individual pump lasers (110).
Abstract:
The present invention relates to an optically pumped solid state laser device, comprising one or several solid state laser media (100) in a laser resonator and one or several pump laser diodes (200) and pump radiation reflecting mirrors (300). The laser resonator is formed of one or several first resonator mirrors arranged at a first side of the solid state laser media (100) and one or several second resonator mirrors (310, 320, 330) arranged at a second side of the solid state laser media (100). The first and second resonator mirrors are arranged to guide laser radiation (500) on at least two different straight paths through each of said laser media (100). The pump laser diodes (200) are arranged to optically pump the solid state laser media (100) by reflection of pump radiation (510) at said pump radiation reflecting mirrors (300). The pump radiation reflecting mirrors (300) and the second resonator mirrors (310, 320, 330) are integrally formed in a single mirror element (600). With this design of the solid state laser device an easy alignment of the pump optics and an enhanced gain of the laser device are achieved. The proposed solid state laser device can be realized in a compact form.
Abstract:
The present invention relates to a stable optical cavity, in which an obstacle is formed or arranged on the optical axis in the form of a through-opening in one of the mirrors or of an input- or output-coupling element, in order to enable a direct geometric access to the optical axis. The mirrors of the cavity are arranged such that a degeneracy of a plurality of transverse eigenmodes of the cavity occurs without an obstacle, by the combination of which an intensity minimum is obtained in the cavity with an obstacle at the position of the through-opening or of the input- or output-coupling element. With this configuration an optical cavity of high finesse which has a position of maximum intensity on the optical axis can be realized.
Abstract:
A large number of passes of pump light through an active mirror in a solid state disk laser is realized using a pair of coupled imaging systems, where the optical axes of imaging systems are not coincident. Two imaging systems are optically coupled, so that an image of the first imaging system is an object of the second imaging system, and vice versa. An active mirror is disposed at the object or image plane, or at the focal plane of any one of the coupled imaging systems, where the position of the reflected pump beam during the multi-reflection between the first and second imaging systems is substantially unchanged.
Abstract:
A laser device for emitting waves in a frequency range belonging to the terahertz range, includes the following, in combination: a wave guide extending longitudinally along an axis A-A′; a superconducting coil arranged coaxially to the wave guide and arranged at a first end of the wave guide; a p-Ge p-doped germanium crystal arranged inside the coil such that the turns of the superconducting coil at least partially surround the p-Ge crystal; a cooling device containing a coolant, the superconducting coil and the p-Ge crystal being arranged in the cooling device, and the wave guide partially extending outside the cooling device; and removing the coolant from the wave guide.
Abstract:
A laser apparatus includes a laser medium; a light source that radiates light to the laser medium, thereby exciting the laser medium and raising the temperature thereof; a reflecting unit having a first plane that reflects light within a predetermined wavelength range from light generated by excitation of the laser medium; and an output mirror disposed opposite the reflecting unit, with the laser medium being interposed therebetween, and causing laser oscillation by inducing resonance of the light within a predetermined wavelength range between the first plane and the output mirror. The reflecting unit is configured to be movable between a position in which light resonance is induced between the output mirror and the first plane and the laser apparatus is set to an oscillation state and a position in which the laser apparatus is set to a non-oscillation state.