摘要:
A pulse width reduction apparatus for an optical system is disclosed and includes at least one birefringent optical element configured to selectively adjust a spectral modulation depth of an optical signal while leaving a spectral transmission function of the optical signal substantially constant
摘要:
A Master Oscillator (MO)null Power Amplifier (PA) configuration (MOPA) can be used advantageously in an excimer laser system for micro-lithography applications, where semiconductor manufacturers demand powers of 40 W or more in order to support the throughput requirements of advanced lithography scanner systems. A MOPA-based laser system can provide both high pulse energies and high spectral purity. A MOPA system can utilize a multi-pass PA, as well as a special beam path capable of reducing the amount of ASE (Amplified Spontaneous Emission) and feedback to the MO. Lithography scanner optics are primarily fused silica, such that the peak pulse power must be kept low to avoid material compaction when a MOPA system is used with lithography applications. This conflict between the demand for high average power and the low peak power requirement of the pulsed excimer laser source can be resolved by using a novel beam path to generate a sufficiently long pulse length.
摘要:
In order to improve a laser amplifying system comprising a solid-state member having a laser-active medium, a radiation field system determined by an optical guide means for the radiation field and an actively switchable, optical switching element arranged in the radiation field system for influencing the losses in the radiation field system in such a manner that this is suitable for low-amplification laser-active media, it is suggested that the solid-state member be designed like a thin plate, the radiation field system comprise an incoming branch and an outgoing branch which are coupled to one another, on the one hand, and between which, on the other hand, an amplifying radiation field is provided which is formed from a plurality of intermediate branches which extend between two optical beam reversing elements and, for their part, all penetrate the solid-state member in a direction transverse to its flat sides and within an active volume area, and that the active volume area have in directions transverse to beam axes of the intermediate branches an extension which corresponds at the most to three times the average extension of the radiation field cross sections of the volume sections of the intermediate branches located in the active volume area.
摘要:
A laser-based method and apparatus for corneal surgery. The present invention is intended to be applied primarily to ablate organic materials, and human cornea in particular. The invention uses a laser source which has the characteristics of providing a shallow ablation depth (0.2 microns or less per laser pulse), and a low ablation energy density threshold (less than or equal to about 10 mJ/cm2), to achieve optically smooth ablated corneal surfaces. The preferred laser includes a laser emitting approximately 100-50,000 laser pulses per second, with a wavelength of about 198-300 nm and a pulse duration of about 1-5,000 picoseconds. Each laser pulse is directed by a highly controllable laser scanning system. Described is a method of distributing laser pulses and the energy deposited on a target surface such that surface roughness is controlled within a specific range. Included is a laser beam intensity monitor and a beam intensity adjustment means, such that constant energy level is maintained throughout an operation. Eye movement during an operation is corrected for by a corresponding compensation in the location of the surgical beam. Beam operation is terminated if the laser parameters or the eye positioning is outside of a predetermined tolerable range. The surgical system can be used to perform surgical procedures including removal of corneal scar, making incisions, cornea transplants, and to correct myopia, hyperopia, astigmatism, and other corneal surface profile defects.
摘要:
An optical system for producing ultraviolet radiation includes an optical source, an optical parametric oscillator (OPO), a frequency doubler, and a mixer. The optical source produces a first beam of radiation. The OPO receives a first portion of the first beam of radiation and produces a second beam of radiation therefrom. The frequency doubler receives a second portion of the first beam of radiation and produces the second harmonic thereof. The mixer mixes the second beam of radiation and the second harmonic of the first beam of radiation to produce an ultraviolet beam of radiation. In a preferred embodiment, the optical source includes a Nd:YAG laser which is frequency doubled to produce a first beam of radiation at a wavelength of approximately 532 nm; and the ultraviolet beam of radiation has a wavelength close to one of the excimer laser lines, typically either 193 nm or 157 nm.
摘要:
An efficient, powerful and reliable system for amplifying optical pulses. Seed-pulses are generated by a seed-pulse source and are transmitted to an optical amplifier for amplification. The power for the amplification is provided by a Q-switched, diode-pumped, extracavity frequency-doubled pump laser.
摘要:
A laser system which generates short duration pulses, such as under five nanoseconds at an energy level of up to a few milli-Joules per pulse (mJ/p) with near diffraction limited beam quality. A laser crystal is pumped (excited) by diode lasers. A resonator having at least two mirror surfaces defines a beam path passing through the laser crystal. The beam path in the resonator is periodically blocked by a first optical shutter permitting pump energy to build up in the laser crystal, except for a short period near the end of each pumping period. While the first optical shutter is open a second optical shutter blocks the light in the resonator except for periodic short intervals, the intervals being spaced such that at least one light pulse traveling at the speed of light in the resonator is able to make a plurality of transits through the resonator, increasing in intensity by extracting energy from the excited laser crystal on each transit. After the light pulse has built up in intensity, an optical release mechanism releases the pulse from resonator.
摘要:
A passive eight-pass solid-state laser amplifier is constructed using a quarter-wave plate (11), a total reflection mirror (12), a polarization beam splitter (5), and a total reflection mirror (6) while input/output faces of a hexagonal zigzag slab solid-state laser medium (15) optically pumped are kept nearly perpendicular to pulsed laser light. Thermal birefringence takes place in the laser medium (15) optically pumped with good symmetry by flash lamps or LDs (9) and is compensated for by a quartz 90.degree. rotator (10). Linearly s-polarized laser light reflected by a polarization beam splitter (3) is output as pulsed laser output light (13) to the outside. Owing to this, saturation laser amplification can be achieved using output laser light from a pulsed laser oscillator of relatively low output, as source light.
摘要:
To amplify and compress optical pulses in a multi-mode (MM) optical fiber, a single-mode is launched into the MM fiber by matching the modal profile of the fundamental mode of the MM fiber with a diffraction-limited optical mode at the launch end. The fundamental mode is preserved in the MM fiber by minimizing mode-coupling by using relatively short lengths of step-index MM fibers with a few hundred modes and by minimizing fiber perturbations. Doping is confined to the center of the fiber core to preferentially amplify the fundamental mode, to reduce amplified spontaneous emission and to allow gain-guiding of the fundamental mode. Gain-guiding allows for the design of systems with length-dependent and power-dependent diameters of the fundamental mode. To allow pumping with high-power laser diodes, a double-clad amplifier structure is employed. For applications in nonlinear pulse-compression, self phase modulation and dispersion in the optical fibers can be exploited. High-power optical pulses may be linearly compressed using bulk optics dispersive delay lines or by chirped fiber Bragg gratings written directly into the SM or MM optical fiber. High-power cw lasers operating in a single near-diffraction-limited mode may be constructed from MM fibers by incorporating effective mode-filters into the laser cavity. Regenerative fiber amplifiers may be constructed from MM fibers by careful control of the recirculating mode. Higher-power Q-switched fiber lasers may be constructed by exploiting the large energy stored in MM fiber amplifiers.
摘要:
A mode locked as a seed source for a solid state regenerative amplifier system is disclosed. The system includes components for forming an external cavity laser with a semiconductor amplifier, exciting and mode locking the cavity laser to emit optical pulses with a linearly time varying optical frequency, collecting and collimating the optical pulses, isolating the optical pulses and amplifying the optical pulses for a selected application. The selected applications include but are not limited to medical imaging, fuel diagnostics, ultrafast spectroscopic measurements, network synchronization, distributed optical clock network, electro-optic sampling, timing Jitter reduction, a source for inducing nonlinear optical effects, and optical time domain relectometry. A mount mechanism support for an optic system is also disclosed. The mount support includes an optic component such as a semiconductor laser diode, a semiconductor optical amplifier, and a fiber optical amplifier as well as mounts for the optic component. The mount further includes a stud for supporting the optic component, cooling and heat-sinking elements for the component, and an isolator for thermally isolating and separating the mounts from the elements. The thermal isolator includes material selected from teflon and double-panel glass. The mounts can further include a vertical mounting block with one side attached to the isolator and a second mounting block positioned perpendicular to and supporting the vertical mounting block.