Abstract:
The present invention relates to a nano-scale flash memory device having a saddle structure, and a fabrication method thereof. Particularly, the invention relates to a highly integrated, high-performance flash memory device having a saddle structure for improving the scaling-down characteristic and performance of the MOS-based flash memory device. According to the invention, a portion of an insulating film around a recessed channel is selectively removed to expose the surface and sides of the recessed channel. A tunneling insulating film is formed on the exposed surface and sides of the recessed channel. On the resulting structure, a floating electrode, an inter-electrode insulating film and a control electrode are formed, thus fabricating the device. Particularly when the floating electrode is made of an insulating nitride film or pluralities of nano-scale dots, an excellent memory device can be made without using an additional mask. According to the invention, the scaling-down characteristic of the device is excellent, and current drive capability can be greatly increased since a channel through which current can flow is formed on the surface and sides of the recessed channel. Also, the ability of the control electrode to control the channel can be enhanced, so that memory write/erase characteristics can be improved.
Abstract:
High dielectric layers formed from layers of hafnium oxide, zirconium oxide, aluminum oxide, yttrium oxide, and/or other metal oxides and silicates disposed on silicon substrates or ozone oxide layers over silicon substrates may be nitrided and post thermally treated by oxidation, annealing, or a combination of oxidation and annealing to form high dielectric layers having superior mobility and interfacial characteristics.
Abstract:
A method of fabricating a semiconductor device includes providing a semiconductor substrate having an active surface, thinning the substrate by removing material from a second surface of the substrate opposite the active surface, bonding a metal carrier to the second surface of the thinned substrate, forming a via opening in the thinned substrate, forming a conductive member in the via opening, and patterning the metal carrier bonded to the second surface of the thinned substrate to form a metal pattern.
Abstract:
In a semiconductor device, a package including the semiconductor device and a method of forming the same, the semiconductor device package includes a semiconductor device, a wiring board, and an underfill material layer. The semiconductor device includes a semiconductor chip, a metal layer, and solder balls for bump contacts. The semiconductor chip includes an active surface having bonding pads and a rear surface opposite the active surface and having concave portions corresponding to the bonding pads. The metal layer fills the concave portions and covers the rear surface. The solder balls for bump contacts are provided on the bonding pads. The wiring board includes an upper surface to which the semiconductor device is mounted and a lower surface opposite the upper surface. The underfill material layer fills a space between the active surface of the semiconductor device and the upper surface of the wiring board. The semiconductor device and the wiring board are electrically connected to each other by the solder balls for bump contacts of the semiconductor device and bonding electrodes included in the upper surface of the wiring board.
Abstract:
A semiconductor package using a chip-embedded interposer substrate is provided. The chip-embedded interposer substrate includes a chip including a plurality of chip pads; a substrate having the chip mounted thereon and including a plurality of redistribution pads for redistributing the chip pads; bonding wires for connecting the chip pads to the redistribution pads; a protective layer having via holes for exposing the redistribution pads while burying the chip and the substrate; and vias connected to the redistribution pads through the via holes. The semiconductor package including chips of various sizes is fabricated using the chip-embedded interposer substrate.
Abstract:
A pillar-type field effect transistor having low leakage current is provided. The pillar-type field effect transistor includes a semiconductor pillar, a gate insulating layer formed on a portion of a surface of the semiconductor pillar, a gate electrode formed on the gate insulating layer, and source/drain regions formed on portions of the semiconductor pillar where the gate electrode is not formed, in which the gate electrode includes a first gate electrode, a second gate electrode, and an inter-gate insulating layer, in which the first gate electrode has a work function higher than that of the second gate electrode, in which the inter-gate insulating layer is formed between the first gate electrode and the second gate electrode, and in which the first gate electrode and the second gate electrode are electrically connected by a contact or a metal interconnection line. A portion of the second gate electrode having the work function lower than that of the first gate electrode is overlapped by the drain region. Accordingly, the gate electrode of the pillar-type FET is formed using a material having a high work function, so that the threshold voltage can be increased and the work function of the portion of the gate electrode overlapped by the drain region can be decreased. Therefore, gate induced drain leakage is reduced, so that off-state leakage current can likewise be greatly reduced.
Abstract:
A semiconductor device includes a semiconductor substrate including an NMOS region and a PMOS region, a gate insulating layer formed on the semiconductor substrate, an NMOS gate formed on the gate insulating layer of the NMOS region, and a PMOS gate formed on the gate insulating layer of the PMOS region. Any one of the NMOS gate and the PMOS gate includes a one-layered conductive layer pattern, and another of the NMOS gate and the PMOS gate includes a three-layered conductive layer pattern.
Abstract:
A semiconductor device comprises a silicate interface layer and a high-k dielectric layer overlying the silicate interface layer. The high-k dielectric layer comprises metal alloy oxides.
Abstract:
An apparatus and method for providing multiple screens are provided. The apparatus includes a service processing module which provides a plurality of services to which a plurality of audio contents are respectively allocated, an interface module which receives a command to designate a first audio content of the plurality of audio contents as an audio content to be focused, an output module which outputs the first audio content that focused in response to the received command.
Abstract:
An air conditioner is provided. The air conditioner according to an embodiment of the present invention includes: a base pan constituting a lower appearance: and a condensed water detector detecting the amount of condensed water collected on the base pan. The air conditioner according to another embodiment of the present invention includes: a base pan constituting a lower appearance; a blower unit provided at one side of the base pan to guide a flow of air; and a motor providing a fan with a rotational power, wherein a motor support supporting the motor is further installed on the base pan.