Abstract:
In an example, a process includes combining a methyl methacrylate monomer, a butadiene monomer, a styrene monomer, and an organophosphate monomer. The process includes initiating a polymerization reaction to form a flame-retardant copolymer.
Abstract:
In an example, a process includes combining a methyl methacrylate monomer, a butadiene monomer, a styrene monomer, and an organophosphate monomer. The process includes initiating a polymerization reaction to form a flame-retardant copolymer.
Abstract:
A plastic film is produced by blending a polymer with particles encapsulating an oxidizing agent, such as hydrogen peroxide. Optionally, an “oxodegradable” and/or “oxo biodegradable” additive that promotes degradation of the polymer in the presence of oxygen may be blended into the plastic film. The presence of the oxidizing agent within the plastic film ensures degradation of an article of manufacture, e.g., a plastic bag, when it is disposed of in an anaerobic environment, such as a landfill. In some embodiments, the particles are microcapsules and/or nanocapsules each having a polymer shell encapsulating a core that includes the oxidizing agent. In some embodiments, the particles are microparticles and/or nanoparticles each having a matrix in which the oxidizing agent is encapsulated.
Abstract:
A bridged polysilsesquioxane-based flame retardant filler imparts flame retardancy to manufactured articles such as connectors and other articles of manufacture that employ thermosetting plastics or thermoplastics. In an exemplary synthetic method, a bridged polysilsesquioxane-based flame retardant filler is prepared by sol-gel polymerization of a monomer having two or more trialkoxysilyl groups attached to an organic bridging group that contains a fire retardant group (e.g., a halogen atom, a phosphinate, a phosphonate, a phosphate ester, and combinations thereof). Bridged polysilsesquioxane particles formed by sol-gel polymerization of (((2,5-dibromo-1,4-phenylene)bis(oxy))bis(ethane-2,1-diyl))bis(trimethoxysilane), for example, and follow-on sol-gel processing may serve both as a filler for rheology control (viscosity, flow, etc.) and a flame retardant.
Abstract:
In an example, a method of butadiene sequestration includes receiving an input stream that includes butadiene. The method includes directing the input stream to a first sulfur dioxide charged zeolite bed for butadiene sequestration via a first chemical reaction of butadiene and sulfur dioxide to form sulfolene.
Abstract:
A bridged polysilsesquioxane-based flame retardant filler imparts flame retardancy to printed circuit boards (PCBs). In an exemplary synthetic method, a bridged polysilsesquioxane-based flame retardant filler is prepared by sol-gel polymerization of a monomer having two or more trialkoxysilyl groups attached to an organic bridging group that contains a fire retardant group (e.g., a halogen atom, a phosphinate, a phosphonate, a phosphate ester, and combinations thereof). Bridged polysilsesquioxane particles formed by sol-gel polymerization of (((2,5-dibromo-1,4-phenylene)bis(oxy))bis(ethane-2,1-diyl))bis(trimethoxysilane), for example, and follow-on sol-gel processing may serve both as a filler for rheology control (viscosity, flow, etc.) and a flame retardant. In an embodiment of the present invention, a PCB laminate stack-up includes conductive planes separated from each other by a dielectric material that includes a bridged polysilsesquioxane-based flame retardant filler.
Abstract:
A method of manufacturing polymeric currency utilizing three dimensional objects may include forming a first and second layer of biaxially oriented polypropylene. Ink may be selectively applied to one or more portions of one or more sides of the first layer of biaxially oriented polypropylene. In response to applying the ink, one or more apertures may be created into the second layer of biaxially oriented polypropylene. The first and second layers of biaxially oriented polypropylene may be laminated together. A three dimensional object may be printed within the one or more apertures in the second layer of biaxially oriented polypropylene. In response to printing, a protective overcoat may be applied on top of the second layer of biaxially oriented polypropylene.
Abstract:
In an example, an apparatus includes a biological analysis component and a control component. The biological analysis component is configured to obtain an expected biological sample value. The expected biological sample value indicates an expected concentration of a material biologically processed by a courier. The biological analysis component is further configured to determine whether a measured biological sample value is associated with the courier based on a comparison of the expected biological sample value to the measured biological sample value. The control component is configured to perform a first set of operations based on the result of the comparison indicating that the measured biological sample value is associated with the courier. The control component is configured to perform a second set of operations based on the result of the comparison indicating that the measured biological sample value is outside an acceptable range of the biological sample value.
Abstract:
In an example, a process for bonding a microcapsule having an encapsulating payload to a polymeric material. The process includes applying a microcapsule (having the encapsulated payload) that includes a dienophile functional group to a polymeric material that includes a diene functional group. The process further includes bonding the microcapsule having the encapsulated payload to the polymeric material via a chemical reaction of the dienophile functional group with the diene functional group.
Abstract:
A bioderived based plasticizer is produced by reacting a bioderived diol (and/or a bioderived alcohol) and a bioderived carboxylic acid in the presence of N,N′-dicyclohexylcarbodiimide (DCC), wherein the bioderived carboxylic acid includes a hydrolyzed oil. The bioderived carboxylic acid (e.g., linoleic acid, α-linolenic acid, oleic acid, and mixtures thereof) may be produced by hydrolyzing a triglyceride, such as canola oil, linseed oil, soybean oil, and mixtures thereof. In one embodiment of the present invention, a bioderived based plasticizer is produced by reacting 2,5-bis-(hydroxymethyl)furan and α-linolenic acid in the presence of DCC. In some embodiments of the present invention, the bioderived based plasticizer is blended into one or more polymers.