Abstract:
An improved control gate decoding design for reducing disturbances during the programming of flash memory cells is disclosed. In one embodiment, a control gate line decoder is coupled to a first control gate line associated with a row of flash memory cells in a first sector and to a second control gate line associated with a row of flash memory cells in a second sector.
Abstract:
Digital multilevel memory systems and methods include a charge pump for generating regulated high voltages for various memory operations. The charge pump may include a plurality of pump stages. Aspects of exemplary systems may include charge pumps that performs orderly charging and discharging at low voltage operation conditions. Additional aspects may include features that enable state by state pumping, for example, circuitry that avoids cascaded short circuits among pump stages. Each pump stage may also include circuitry that discharges its nodes, such as via self-discharge through associated pump interconnection(s). Further aspects may also include features that: assist power-up in the various pump stages, double voltage, shift high voltage levels, provide anti-parallel circuit configurations, and/or enable buffering or precharging features, such as self-buffering and self-precharging circuitry.
Abstract:
Various examples of decoders and physical layout designs for non-volatile flash memory arrays in an analog neural system are disclosed. In one example, a system comprises a plurality of vector-by-matrix multiplication arrays in an analog neural memory system, each vector-by-matrix multiplication array comprising an array of non-volatile memory cells organized into rows and columns, wherein each memory cell comprises a word line terminal; a plurality of read row decoders, each read row decoder coupled to one of the plurality of vector-by-matrix multiplication arrays for applying a voltage to one or more selected rows during a read operation; and a shared program row decoder coupled to all of the plurality of vector-by-matrix multiplication arrays for applying a voltage to one or more selected rows in one or more of the vector-by-matrix multiplication arrays during a program operation.
Abstract:
Numerous examples are disclosed of multiplexors coupled to rows in a neural network array. In one example, a system comprises a neural network array of non-volatile memory cells comprising i rows, where i is a multiple of 2; j row registers, where j
Abstract:
Numerous examples for performing tuning of a page or a word of non-volatile memory cells in an analog neural memory are disclosed. In one example, an analog neural memory system comprises an array of non-volatile memory cells arranged into rows and columns, each non-volatile memory cell comprising a word line terminal, a bit line terminal, and an erase gate terminal; a plurality of word lines, each word line coupled to word line terminals of a row of non-volatile memory cells; a plurality of bit lines, each bit line coupled to bit line terminals of a column of non-volatile memory cells; and a plurality of erase gate enable transistors, each erase gate enable transistor coupled to erase gate terminals of a word of non-volatile memory cells.
Abstract:
Numerous embodiments are disclosed for a high voltage generation algorithm and system for generating high voltages necessary for a particular programming operation in analog neural memory used in a deep learning artificial neural network. In one example, a method for programming a plurality of non-volatile memory cells in an array of non-volatile memory cells, comprises generating a high voltage, and programming a plurality of non-volatile memory cells in an array using the high voltage when a programming enable signal is asserted and providing a feedback loop to maintain the high voltage while programming the plurality of non-volatile memory cells.
Abstract:
Numerous embodiments of analog neural memory arrays are disclosed. In one embodiment, a system comprises a first array of non-volatile memory cells, wherein the cells are arranged in rows and columns and the non-volatile memory cells in one or more of the columns stores W+ values, and wherein one of the columns in the first array is a dummy column; and a second array of non-volatile memory cells, wherein the cells are arranged in rows and columns and the non-volatile memory cells in one or more of the columns stores W− values, and wherein one of the columns in the second array is a dummy column; wherein pairs of cells from the first array and the second array store a differential weight, W, according to the formula W=(W+)−(W−).
Abstract:
Numerous embodiments of a transceiver for providing high voltages for use during erase or program operations in a non-volatile memory system are disclosed. In one embodiment, a transceiver comprises a PMOS transistor and a native NMOS transistor. In another embodiment, a transceiver comprises a PMOS transistor, an NMOS transistor, and a native NMOS transistor.