Abstract:
A composition comprising a blend of a polyolefin, polylactic acid, and a reactive modifier. A method of producing an oriented film comprising reactive extrusion compounding a mixture comprising polypropylene, polylactic acid, a reactive modifier to form a compatibilized polymeric blend, casting the compatibilized polymeric blend into a film, and orienting the film. A method of preparing a reactive modifier comprising contacting a polyolefin, a multifunctional acrylate comonomer, and an initiator under conditions suitable for the formation of an epoxy-functionalized polyolefin wherein the epoxy-functionalized polyolefin has a grafting yield of from 0.2 wt. % to 15 wt. %.
Abstract:
A method for the oxidative coupling of hydrocarbons, such as the oxidative coupling of methane to toluene, includes providing an oxidative catalyst inside a reactor, and carrying out the oxidative coupling reaction under a set of reaction conditions. The oxidative catalyst includes (A) at least one element selected from the group consisting of the Lanthanoid group, Mg, Ca, and the elements of Group 4 of the periodic table (Ti, Zr, and Hf); (B) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements of Group 3 (including La and Ac) and Groups 5-15 of the periodic table; (C) at least one element selected from the group consisting of the Group 1 elements of Li, Na, K, Rb, Cs, and the elements Ca, Sr, and Ba; and (D) oxygen.
Abstract:
Polymeric compositions and processes of forming the same are described herein. The Processes generally include contacting a polyolefin with a polylactic acid in the presence of at least 800 ppm of a radical initiator under extrusion conditions to produce a polyolefin-polylactic acid copolymer.
Abstract:
A group V metal/rhenium-modified molecular sieve catalyst can be used in hydrocarbon conversion reactions. Embodiments can provide a toluene conversion of at least 30 wt % with selectivity to benzene above 40 wt % and to xylenes above 40 wt % and non-aromatics selectivity of less than 2.0 wt %.
Abstract:
The present invention provides a process for the preparation of a catalyst having a high surface area and pore volume. The process includes freeze drying an intermediary of the catalyst. The present invention further includes a catalyst prepared by a process that includes the freeze drying step. The present invention also includes a catalyst having a high acidity, as indicated by having an ammonium desorption peak at greater than about 500null C. The prevent invention further includes a method of manufacturing isomerized organic compounds using the catalyst.
Abstract:
A new synthesis of a Ziegler-Natta catalyst uses a multi-step preparation that includes treating a magnesium dialkoxide compound with halogenating/titanating agents, an organoaluminum preactivating agent, and a heat treatment. The catalyst may be used in the polymerization of olefins, particularly ethylene, to control the molecular weight distribution of the resulting polyolefins.
Abstract:
The invention is directed to a metallocene catalyst system and a process for preparing the system. The metallocene catalyst system comprises a support and metallocene bound substantially throughout the support. The selection of certain supports facilitates the production of metallocene catalyst systems having increased catalytic activity than previously recognized.
Abstract:
The present invention relates to a process for making beads of expandable polystyrene by utilizing as an additive in the suspension polymerization process, a small amount of a low-molecular-weight polyethylene having a molecular weight of around 2000.
Abstract:
Disclosed is a polymeric composition that can include at least 95 wt. % of a polypropylene copolymer, and 50 ppm to 2000 ppm of an aryl amide containing clarifying agent, a phosphate ester salt containing clarifying agent, or a combination thereof. The polymeric composition can have a haze value of A after being extruded once and a haze value of B after being extruded 2 times, wherein the ratio of A to B is 1 to 1.35, wherein A is less than 25%, and wherein A and B are determined in accordance with ASTM D1003, at a thickness of about 40 mil.
Abstract:
Polymer blends, methods of making, and methods of using the polymer blends are described. A polymer blend can include a polyethylene (PE) polymer and a controlled rheology polypropylene (CRPP) polymer having a PE polymer to CRPP polymer (PE:CRPP) weight ratio of greater than 1:1.