Abstract:
A method of lancing the tissue of a patient provides a tissue penetration element with a tip configured to penetrate tissue and a shaft portion. The tissue penetration element is disposed in proximity to the tissue of the patient. The tissue penetration element is driven distally towards the tissue of the patient. Contact is made between the tip and the tissue of the patient. The tip is advanced into the tissue during a penetration stroke to a position of maximum inward displacement. The tissue penetration element is allowed to settle upon reaching the point of maximum inward penetration for at least about 1 millisecond with no driving force imposed on the tissue penetration element. The tissue penetration element is displaced proximally over a withdrawal stroke and the tip is removed from the tissue.
Abstract:
In one embodiment of the present invention a lancet is provided that has a sharpened distal tip, a shaft portion and a proximal drive head. The proximal drive head has a transverse dimension that is substantially larger than a transverse dimension of the shaft portion adjacent to the proximal drive head.
Abstract:
A tissue penetration device and method of using same. The tissue penetration device may optionally include sampling and analyzing functions, which may be integrated. An embodiment provides control of a lancet used for sampling blood. Electric field coils or solenoids may drive the lancet using electromagnetic force. Advancement and retraction of a lancet may be controlled by a feedback loop monitoring the position and velocity of the lancet embodiments of the lancet driver can be configured to follow a predetermined tissue lancing profile. Embodiments of the invention include a lancet and method for using a lancet to maintain the patency of the wound tract once the lancet has cut into the skin.
Abstract:
A portable medical analyzer comprising a sampling module with a sample port for receiving body fluid, an assay sensor module for analysis of the body fluid, an analytical detector module with detection of information from the assay, and a communications module for transferring the information to a remote location via a wired or wireless network.
Abstract:
Blood samples can be collected without substantial contamination from ambient air, such that the blood sample may be analysed accurately for gaseous components such as oxygen and carbon dioxide. An embodiment of the device has integrated actuation, lancing, and sample acquisition components, which in some embodiments are miniatuized and/or disposable.
Abstract:
Sample carrier for IR spectroscopy which has a sample application zone as well as at least one groove-shaped channel into which liquid is drawn from the sample application zone as a result of capillary forces. A method for IR spectroscopy using a sample carrier according to the invention and a system for IR spectroscopy using the sample carrier according to the invention.
Abstract:
Apparatus for the optical characterization of the internal structure and/or composition of a spatially extended, scattering sample comprising an arrangement of one or several light sources and one or several light detectors and a displacement sensor.
Abstract:
Method for determining an analyte in a scattering matrix. In a detection step detection measurements are made in which light is irradiated into the matrix as primary light and light leaving the scattering matrix is detected as secondary light, in order to determine as a measurement quantity a measurable physical property of the light which is variable due to the interaction of the light with the matrix. Information on the presence of the analyte in the matrix is determined in an evaluation step. The determination of optically weakly absorbing analytes against a strongly absorbing interference background is improved by the use of two selection methods for the depth selective detection of the secondary light in combination with one another. Primary light is focused by means of a primary light optically focussing element onto a region of focus lying in the matrix at a predetermined measuring depth and the region of focus is imaged by means of a secondary light optically focusing element onto a light entry aperture arranged in the light path of the secondary light to the detector. In addition to this first depth selection by a confocal arrangement, a second depth selection device is used to detect light reflected from a defined measuring depth as secondary light, with the measuring depth coinciding with the depth of focus.
Abstract:
Method and apparatus for the analytical determination of glucose concentration in a biological matrix, wherein in a detection step light from a light emitter is irradiated into the biological matrix as primary light via a boundary surface of the biological matrix and light emerging from the the biological matrix through a boundary surface is being detected by a light detector in order to determine a measurable physical light property which is changed by interaction with the biological matrix and which correlates with the glucose concentration of said matrix. The glucose concentration is ascertained in an evaluation step on the basis of said change of the physical light property determined in at least one detection step in comparison with a calibration. In order to achieve by such a method good analytical accuracy in reagent-free and non-invasive manner, for instance to observe the change of the concentration of the analyzed substance (monitoring) over an adequate time interval, a measurable parameter corresponding to the light transit-time within the biological matrix between a defined irradiation site and a defined detection site and correlating with the glucose concentration is determined in the detection step.
Abstract:
A disposable biosensor test strip is provided that includes a plurality of penetrating members. Each penetrating member is associated with a capillary chamber that has a depth suitable for capillary flow of blood and holds a volume of less than about 1.0 .μl of the blood sample. A working electrode and a counter or reference electrode are disposed within the capillary chamber. A reagent is proximal to or in contact with at least the working electrode. The reagent includes an enzyme and a mediator. The reagent reacts with glucose to produce an electroactive reaction product. A blood sample, containing glucose, is applied into the capillary chamber. The capillary chamber directs capillary flow of the blood sample into contact with the reagent to cause the blood sample to at least partially solubilize or hydrate the reagent. The blood sample is detected in the capillary chamber. The electroactive reaction product is electro-oxidized or electro-reduced at the working electrode. Within 10 seconds after detecting, a determination is made of glucose concentration and a readout of the measurement is provided. The glucose determination is made by correlating the electro-oxidized or electro-reduced electroactive reaction product to the concentration of glucose in the blood sample.