摘要:
A process for manufacturing a packaged microelectromechanical device includes: forming a lid having a face and a cavity open on the face; coating the face of the lid and walls of the cavity with a metal layer containing copper; and coating the metal layer with a protective layer.
摘要:
A microelectronic device structure including increased thermal dissipation capabilities. The structure including a three-dimensional (3D) integrated chip assembly that is flip chip bonded to a substrate. The chip assembly including a device substrate including an active device disposed thereon. A cap layer is physically bonded to the device substrate to at least partially define a hermetic seal about the active device. The microelectronic device structure provides a plurality of heat dissipation paths therethrough to dissipate heat generated therein.
摘要:
Miniaturized devices such as MEMS switches (10) have encapsulating enclosures (100). The enclosure (100) and the remainder of the switch (10) are fabricated on a concurrent basis by depositing layers of an electrically-conductive material, such as copper, on a substrate (26).
摘要:
A hermetically packaged microelectromechanical system (MEMS) device has a substrate with an assembly pad (101) and a plurality of terminals (102); a chip (110) with a MEMS mechanical element (111) of a first height (111a) assembled on the pad and connected to the terminals by wires (120) with an insulating coat (121); a ridge (130) on the substrate, which surrounds the MEMS element (111) with a second height (130c) greater than the first height and comprises a plastic compound (131) filled with particles (132) and a surface (130a, 130b) having an adhering moisture-impermeable seal layer (133); and a moisture-impervious lid (140) attached to the ridge by moisture-proof bonds (150, 151), sealing the volume (160) enclosed by the lid, the chip, and the metalized ridge as a hermetic space for the MEMS element (111).
摘要:
A component system includes at least one MEMS element, a cap for a micromechanical structure of the MEMS element, and at least one ASIC substrate. The micromechanical structure of the MEMS element is implemented in the functional layer of an SOI wafer. The MEMS element is mounted face down, with the structured functional layer on the ASIC substrate, and the cap is implemented in the substrate of the SOI wafer. The ASIC substrate includes a starting substrate provided with a layered structure on both sides. At least one circuit level is implemented in each case both in the MEMS-side layered structure and in the rear-side layered structure of the ASIC substrate. In the ASIC substrate, at least one ASIC through contact is implemented which electrically contacts at least one circuit level of the rear-side layered structure and/or at least one circuit level of the MEMS-side layered structure.
摘要:
Hybrid integrated components including an MEMS element and an ASIC element are described, whose capacitor system allows both signal detection with comparatively high sensitivity and sensitive activation of the micromechanical structure of the MEMS element. The hybrid integrated component includes an MEMS element having a micromechanical structure which extends over the entire thickness of the MEMS substrate. At least one structural element of this micromechanical structure is deflectable and is operationally linked to at least one capacitor system, which includes at least one movable electrode and at least one stationary electrode. Furthermore, the component includes an ASIC element having at least one electrode of the capacitor system. The MEMS element is mounted on the ASIC element, so that there is a gap between the micromechanical structure and the surface of the ASIC element. According to the invention, at least one electrode of the capacitor system is separated from the layered structure of the ASIC element and instead mechanically and electrically connected to the deflectable structural element of the MEMS element, so that this electrode functions as a movable electrode of the capacitor system.
摘要:
A low-cost micro-electro-mechanical system (MEMS) has a mass-produced carrier fabricated as a pre-molded leadframe so that the space of the leadframe center is filled with compound and a two-tier recess is created in the center. The first tier is filled by an inset with a first perforation and a second perforation. An integrated circuit chip with an opening and a membrane at the end of the opening, operable as a pressure sensor, microphone, speaker, etc, is assembled on the inset so that the opening is aligned with the first perforation. The chip is protected by a cover transected by a vent aligned with the second inset perforation. An air channel can then reach from the ambient through the vent and the second perforation to the second tier recess, which connects to the first perforation and the chip opening to the membrane.
摘要:
A packaging scheme for MEMS device is provided. A method of packaging MEMS device in a semiconductor structure includes forming an insulation fence that surrounds the MEMS device on the semiconductor structure. The method further includes attaching a wafer of dielectric material to the insulation fence. The lid wafer, the insulation fence, and the semiconductor structure enclose the MEMS device.
摘要:
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. The material that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and/or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and/or facilitates integration with high-performance integrated circuits. In one embodiment, the material that encapsulates the mechanical structures is, for example, silicon (polycrystalline, amorphous or porous, whether doped or undoped), silicon carbide, silicon-germanium, germanium, or gallium-arsenide.