Abstract:
A bidirectional power switch includes first and second thyristors connected in antiparallel between first and second conduction terminals of the switch. The first thyristor is of an anode-gate thyristor, and the second thyristor is of a cathode-gate thyristor. The gates of the first and second thyristors are coupled to a same control terminal of the switch by respective dipole circuits. At least one of the dipole circuits is formed by at least one diode or at least one resistor.
Abstract:
A bidirectional switch formed in a substrate includes first and second main vertical thyristors in antiparallel connection. A third auxiliary vertical thyristor has a rear surface layer in common with the rear surface layer of the first thyristor. A peripheral region surrounds the thyristors and connects the rear surface layer to a layer of the same conductivity type of the third thyristor located on the other side of the substrate. A metallization connects the rear surfaces of the first and second thyristors. An insulating structure is located between the rear surface layer of the third thyristor and the metallization. The insulating structure extends under the periphery of the first thyristor. The insulating structure includes a region made of an insulating material and a complementary region made of a semiconductor material.
Abstract:
An acoustic galvanic isolation device includes a substrate capable of transmitting an acoustic wave. A first network of vibrating membrane electroacoustic transducers is arranged on a first surface of the substrate. A second network of vibrating membrane electroacoustic transducers is arranged on a second opposite surface of the substrate. An effective thickness of the substrate exhibits a gradient between the first and second surfaces with respect to propagating the acoustic wave.
Abstract:
A device includes passive radio frequency components formed of portions of metal layers separated by insulating layers and crossed by vias. The insulating layers are positioned on an upper surface of an insulating substrate. Islands of a semiconductor material extend into the insulating substrate from the upper surface. Active integrated circuit components are formed in the islands.
Abstract:
A control circuit varies the power of a load powered by an alternating voltage, comprising: a first thyristor and a first diode connected in antiparallel between first and second nodes, the cathode of the first diode being on the side of the first node; a second thyristor and a second diode connected in antiparallel between the second node and a third node, the cathode of the second diode being on the side of the third node; third and fourth diodes connected in antiseries between the first and third nodes, the cathodes of the third and fourth diodes being connected to a fourth node; a transistor between the second and fourth nodes; and a control unit for controlling the first and second thyristors and the transistor.
Abstract:
A rectifying circuit includes a first diode coupled between a first terminal configured to receive application of an A.C. voltage and a first terminal configured to deliver a rectified voltage; and an anode-gate thyristor coupled between a second terminal configured to receive application of the A.C. voltage and a second terminal configured to deliver the rectified voltage, wherein an anode of the anode-gate thyristor is connected to the second terminal configured to deliver the rectified voltage.
Abstract:
A coupling circuit, including: a coupler including a first conductive line and a second conductive line coupled to the first one; at each end of the second line of the coupler, a two-output signal splitter; and at each output of each splitter, a filtering function.
Abstract:
An overvoltage protection device including: a doped substrate of a first conductivity type having a first doping level, coated with a doped epitaxial layer of the second conductivity type having a second doping level; a first doped buried region of the second conductivity type having a third doping level greater than the second level, located at the interface between the substrate and the epitaxial layer in a first portion of the device; and a second doped buried region of the first conductivity type having a fourth doping level greater than the first level, located at the interface between the substrate and the epitaxial layer in a second portion of the device.
Abstract:
An SCR-type component of vertical structure has a main upper electrode formed on a silicon region of a first conductivity type which is formed in a silicon layer of a second conductivity type. The silicon region is interrupted in first areas where the material of the silicon layer comes into contact with the upper electrode, and is further interrupted in second areas filled with resistive porous silicon extending between the silicon layer and the main upper electrode.
Abstract:
A liquid composition is provided for forming a thin film in the form of a mixed composite metal oxide in which a composite oxide B containing copper (Cu) and a composite oxide C containing manganese (Mn) are mixed into a composite metal oxide A represented with the general formula: Ba1-xSrxTiyO3, wherein the molar ratio B/A of the composite oxide B to the composite metal oxide A is within the range of 0.002