Abstract:
The present invention relates to methods of testing medications to evaluate authenticity and identify counterfeits. The testing methods employ a reactive system comprising a solvent and an acid. Optionally, the reactive system can also comprise an organometallic agent. The testing methods can provide rapid results verifying the authenticity of an antimalarial medication. Further the test method can provide clear results that can be implemented and interpreted without special training, anywhere in the world. The test methods can offer quantitative and qualitative results. The test methods are based on reactions that yield different colors where the color can indicate the presence of an active ingredient, and the intensity of the color can indicate the concentration of the active ingredient.
Abstract:
The invention novel compounds, pharmaceutical compositions and methods useful for preventing or treating cancer in animals and humans. Also, the invention provides novel prodrugs useful for reducing tumor size, and inhibiting the growth of cancers, inhibiting tumor cell growth and tumor cell proliferation, and promoting apoptosis of tumor cells. When used in combination with chemoradiation therapy, the novel compounds, compositions and prodrugs provided herein can improve the effectiveness of chemoradiation therapy. The novel compounds, compositions and prodrugs of the invention inhibit PDK and LDH in unique and effective ways.
Abstract:
Self-assembled monolayer hybrid materials having a modified carboxylic acid deposited from the gas-phase onto a metal oxide substrate, methods of using targeted α-carbon modified carboxylic acids to rapidly deposit activated organic molecules into a self-assembled monolayer on metal oxide substrates, and the self-assembled monolayer hybrid materials capable of being used in various industries, such as optoelectronics and separation science.
Abstract:
In accordance with the present invention, taught is a high purity germanium crystal growth method utilizing a quartz shield inside a steel furnace. The quartz shield is adapted for not only guiding the flow of an inert gas but also preventing the germanium melt from contamination by insulation materials, graphite crucible, induction coil and stainless steel chamber. A load cell provides automatic control of crystal diameter and helps to ensure exhaustion of the germanium melt. The method is both convenient and effective at producing high purity germanium crystals by relatively low skilled operators.
Abstract:
The present invention provides formulations comprising polymers and therapeutics and methods for their manufacture. The present invention also provides medical devices coated with such formulations and methods for their manufacture. The drug-loaded polymer formulations, solutions, and films tailor the drug release characteristics for medical devices.
Abstract:
Disclosed herein are compositions for treating cancer comprising a modified veratridine. In certain aspects, the modified veratridine comprises a polyglutamic acid (PLE) or polyethylene glycol/polyglutamic acid (PEG-PLE) conjugated to the 4′ hemiketal thereof. Further disclosed is a method of treating colorectal cancer in a subject comprising administering to a subject an effective amount of the disclosed compositions.
Abstract:
An engine oil additive includes carbon nanotubes and boron nitride particulates dispersed within a fluid. The additive is configured to be mixed with a quantity of oil such that the quantity of oil has a concentration from 0.05 to 0.5 grams of carbon nanotubes and of boron nitride particulates per quart of oil to improve the lubricity of the oil. The additive improves the horsepower and torque of the engine while reducing fuel consumption. The carbon nanotubes have an —OH functionalized exterior surface. The carbon nanotubes have a diameter from 1 nanometer to 50 nanometers and have a length from 1 micron to 1000 microns. The boron nitride particulates are hex-boron nitride structures having an average size from 30 nanometers to 500 nanometers.
Abstract:
The present disclosure addresses limitations in ferritic materials. In at least one aspect, the present disclosure provides core-shell nanoparticles exhibiting improved characteristics for implementations and adoptability in numerous applications. Further aspects of the disclosure provide core-shell nanoparticles for use in electronic, magnetic and electro-magnetic applications. Still, other aspects of the present disclosure provide core-shell nanoparticles for a thermochemical water-splitting reaction resulting in increased H2 volume generation during multiple thermochemical cycles.
Abstract:
The present invention describes a bio-based process to produce high quality protein concentrate (HQPC) by converting plant derived celluloses into bioavailable protein via aerobic incubation, including the use of such HQPC so produced as a nutrient, including use as a fish meal replacement in aquaculture diets.
Abstract:
The present disclosure is directed to compositions, methods, and treated surfaces that comprise a co-polymer composition comprising a rechargeable N-halamine moiety and one or more monomers. The compositions are pre-halogenated for providing a single step application for antimicrobial use without the need for a subsequent chlorine application for activation of antimicrobial properties. The copolymers provide for effective and rapid inactivation of bacteria and viruses, with improved solubility and stability.