Abstract:
Embodiments of the present disclosure include methods, apparatuses, and instructions for receiving at a user equipment (UE) of a third generation partnership project (3GPP) network an offset value selected from a plurality of offset values in downlink control information. The UE also receives one or more enhanced control channel elements (eCCEs) of an enhanced physical downlink control channel (ePDCCH). The UE may then determine an allocation of an uplink resource for a transmission on a physical uplink control channel (PUCCH) based at least in part on the index of a first eCCE and the offset value.
Abstract:
Power control schemes for D2D communications are described. The schemes control the transmission power of a UE during D2D communications in a manner that reduces interference while maintaining the D2D communications link and the cellular link with the eNB. Open-loop and/or closed-loop techniques are employed.
Abstract:
Technology for selecting physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) is disclosed. In an example, device operable in an evolved Node B (eNB) to select physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) can include computer circuitry configured to: Determine a frequency bandwidth for the NCT; and select a CRS pattern of PRBs for a transmission of the CRS in the frequency bandwidth, wherein the frequency bandwidth includes PRBs with CRS and PRBs without CRS.
Abstract:
An apparatus and system to compensate for phase noise in a 5G or 6G DFT-S-OFDM signal are described. An access port (AP)-specific orthogonal cover code (OCC) is applied to phase tracking reference signal (PTRS) symbols in each of a plurality of PTRS groups. The PTRS group are inserted between data symbols to form a data vector prior to perform transform precoding on the data vector and transmission to a UE. The UE extracts the PTRS symbols from different PTRS APs using the OCC specific to each AP. After extraction, the phase noise for each PTRS group is estimated and used to compensate the data symbols associated with the PTRS group.
Abstract:
An apparatus and method for flexible adjustment of the uplink-downlink ratio configuration for each enhanced node B (eNodeB) within a wireless communications network is disclosed herein. In one embodiment, a given eNodeB is configured to determine a current or subsequent uplink-downlink ratio configuration for a pre-determined time period. The determined current or subsequent uplink-downlink ratio configuration is encoded into a special physical downlink control channel (PDCCH), the special PDCCH included in at least one radio frame according to the pre-determined time period. The radio frame including the special PDCCH is transmitted to user equipment served by the given eNodeB.
Abstract:
An apparatus, computer-readable medium, and method to determine a user equipment (UE) location in a wireless network using signals from a wireless local-area network are disclosed wireless communication network entity may be configured to send WLAN assistance data to a UE. The WLAN assistance data may include a list of one or more WLAN access points (APs). The wireless communication network entity may receive location information from the UE. The location information may be based on measurements of signals from one or more of the WLAN APs. The wireless communication network entity may determine an estimate of the location of the UE based on the location information and stored information at the wireless communication network. The wireless communication network entity may determine the estimate of the location of the UE based on the measurements of the signals of the WLAN APs and a geographic position of the WLAN APs.
Abstract:
Embodiments of the present disclosure include methods, apparatuses, and instructions for receiving at a user equipment (UE) of a third generation partnership project (3GPP) network an offset value selected from a plurality of offset values in downlink control information. The UE also receives one or more enhanced control channel elements (eCCEs) of an enhanced physical downlink control channel (ePDCCH). The UE may then determine an allocation of an uplink resource for a transmission on a physical uplink control channel (PUCCH) based at least in part on the index of a first eCCE and the offset value.
Abstract:
Disclosed is a method including communicating, by a mobile device, with a base station via first and second component carriers having different frequency bands and time division duplexing (TDD) configurations. The method may include receiving one or more downlink transmissions via the second component carrier. The method may include selecting a hybrid automatic repeat request (HARQ) timing sequence based on the TDD configurations of the first and second component carriers. The method may include transmitting one or more positive acknowledgment and/or negative acknowledgement (ACK/NACK) signals, associated with the one or more downlink transmissions, according to the selected HARQ timing sequence. Other embodiments may be described and claimed.
Abstract:
Technology is discussed for supporting the incorporation of a Primary Synchronization Signal (PSS) and/or a Secondary Synchronization Signal (SSS) within in a New Carrier Type (NCT) for a Component Carrier (CC). Guidelines for incorporating the PSS and/or the SSS in the NCT are discovered, together with potential collisions with other signals that can be avoided for various scenarios. In some examples, various guidelines and potential collisions discovered herein, for various scenarios, inform approaches to incorporating the PSS and/or the SSS based on the positioning of the PSS and/or the SSS. In other examples, other signals, such as DeModulation Reference Symbols (DMRS) are reconfigured to allow incorporation of the PSS and the SSS.
Abstract:
Disclosed in some examples is a method for providing a HARQ response in an LTE network for a PUCCH format 1b. The method includes receiving one or more downlink assignments of a bundling window over a wireless downlink control channel; setting a reception status for each sub-frame of a downlink data channel in the bundling window based on whether the sub-frame on the downlink data channel was associated with a particular one of the received downlink assignments and based upon whether the sub-frame was successfully received; setting a reception status of sub-frames of the downlink data channel in the bundling window that did not have a corresponding downlink assignment to a predetermined value; and transmitting a response, the response based upon the reception statuses set by the response module.